Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants

Sri H Kanuri, Rolf P Kreutz, Sri H Kanuri, Rolf P Kreutz

Abstract

Direct oral anticoagulants (DOAC) have shown an upward prescribing trend in recent years due to favorable pharmacokinetics and pharmacodynamics without requirement for routine coagulation monitoring. However, recent studies have documented inter-individual variability in plasma drug levels of DOACs. Pharmacogenomics of DOACs is a relatively new area of research. There is a need to understand the role of pharmacogenomics in the interpatient variability of the four most commonly prescribed DOACs, namely dabigatran, rivaroxaban, apixaban, and edoxaban. We performed an extensive search of recently published research articles including clinical trials and in-vitro studies in PubMed, particularly those focusing on genetic loci, single nucleotide polymorphisms (SNPs), and DNA polymorphisms, and their effect on inter-individual variation of DOACs. Additionally, we also focused on commonly associated drug-drug interactions of DOACs. CES1 and ABCB1 SNPs are the most common documented genetic variants that contribute to alteration in peak and trough levels of dabigatran with demonstrated clinical impact. ABCB1 SNPs are implicated in alteration of plasma drug levels of rivaroxaban and apixaban. Studies conducted with factor Xa, ABCB1, SLCOB1, CYP2C9, and VKORC1 genetic variants did not reveal any significant association with plasma drug levels of edoxaban. Pharmacokinetic drug-drug interactions of dabigatran are mainly mediated by p-glycoprotein. Strong inhibitors and inducers of CYP3A4 and p-glycoprotein should be avoided in patients treated with rivaroxaban, apixaban, and edoxaban. We conclude that some of the inter-individual variability of DOACs can be attributed to alteration of genetic variants of gene loci and drug-drug interactions. Future research should be focused on exploring new genetic variants, their effect, and molecular mechanisms that contribute to alteration of plasma levels of DOACs.

Keywords: SNPs; apixaban; dabigatran; direct oral anticoagulant; edoxaban; gene-drug interactions; genetic variants; genome guided therapy; pharmacogenomics; rivaroxaban.

Conflict of interest statement

The authors have no relevant affiliations or financial interest or conflicts with any organization regarding the subject matter discussed in the review. This includes employment, consultancies, honoraria, stock ownership, expert testimony, grants, patents or royalties. RPK has received research funding from Idorsia and consulting fees from Roche Diagnostics and Haemonetics. No writing assistance was used in preparation of the manuscript.

Figures

Figure 1
Figure 1
Pharmacogenomics of novel direct oral anticoagulants.

References

    1. Pirmohamed M. Warfarin: Almost 60 years old and still causing problems. Br. J. Clin. Pharmacol. 2006;62:509–511. doi: 10.1111/j.1365-2125.2006.02806.x.
    1. Mekaj Y.H., Mekaj A.Y., Duci S.B., Miftari E.I. New oral anticoagulants: Their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events. Ther. Clin. Risk Manag. 2015;11:967–977. doi: 10.2147/TCRM.S84210.
    1. Lip G.Y.H., Agnelli G. Edoxaban: A focused review of its clinical pharmacology. Eur. Heart J. 2014;35:1844–1855. doi: 10.1093/eurheartj/ehu181.
    1. Burn J., Pirmohamed M. Direct oral anticoagulants versus warfarin: Is new always better than the old? Open Heart. 2018;5:e000712. doi: 10.1136/openhrt-2017-000712.
    1. Franco Moreno A.I., Martin Diaz R.M., Garcia Navarro M.J. Direct oral anticoagulants: An update. Med. Clin. 2018;151:198–206. doi: 10.1016/j.medcli.2017.11.042.
    1. Michalcova J., Penka M., Bulikova A., Zavrelova J., Steparova A. New—Direct oral anticoagulants: Actual review. Vnitr. Lek. 2016;62:805–813.
    1. Thachil J. The newer direct oral anticoagulants: A practical guide. Clin. Med. 2014;14:165–175. doi: 10.7861/clinmedicine.14-2-165.
    1. Barnes G.D., Lucas E., Alexander G.C., Goldberger Z.D. National Trends in Ambulatory Oral Anticoagulant Use. Am. J. Med. 2015;128:1300–1305.e2. doi: 10.1016/j.amjmed.2015.05.044.
    1. Alalwan A.A., Voils S.A., Hartzema A.G. Trends in utilization of warfarin and direct oral anticoagulants in older adult patients with atrial fibrillation. Am. J. Health-Syst. Pharm. Ajhp Off. J. Am. Soc. Health-Syst. Pharm. 2017;74:1237–1244. doi: 10.2146/ajhp160756.
    1. Cherubini A., Carrieri B., Marinelli P. Advantages and disadvantages of direct oral anticoagulants in older patients. Geriatr. Care. 2018;4:7227. doi: 10.4081/gc.2018.7227.
    1. Bauer K.A. Pros and cons of new oral anticoagulants. Ash Educ. Program Book. 2013;2013:464–470. doi: 10.1182/asheducation-2013.1.464.
    1. Milling T.J., Frontera J.A. Exploring Indications for the Use of Direct Oral Anticoagulants and the Associated Risks of Major Bleeding. Am. J. Manag. Care. 2017;23(Suppl. 4):S67–S80.
    1. Schaefer J.K., McBane R.D., Wysokinski W.E. How to choose appropriate direct oral anticoagulant for patient with nonvalvular atrial fibrillation. Ann. Hematol. 2016;95:437–449. doi: 10.1007/s00277-015-2566-x.
    1. Hinojar R., Jiménez-Natcher J.J., Fernández-Golfín C., Zamorano J.L. New oral anticoagulants: A practical guide for physicians. Eur. Heart J. Cardiovasc. Pharmacother. 2015;1:134–145. doi: 10.1093/ehjcvp/pvv002.
    1. Dager W.E., Banares L. Reversing the anticoagulation effects of dabigatran. Hosp. Pract. 2017;45:29–38. doi: 10.1080/21548331.2017.1298389.
    1. Reed M., Nicolas D. Andexanet Alfa. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2018.
    1. Li J., Wang S., Barone J., Malone B. Warfarin Pharmacogenomics. Pharm. Ther. 2009;34:422–427.
    1. Piatkov I., Rochester C., Jones T., Boyages S. Warfarin Toxicity and Individual Variability—Clinical Case. Toxins. 2010;2:2584–2592. doi: 10.3390/toxins2112584.
    1. Dean L. Warfarin Therapy and VKORC1 and CYP Genotype. In: Pratt V., McLeod H., Rubinstein W., Dean L., Kattman B., Malheiro A., editors. Medical Genetics Summaries. National Center for Biotechnology Information; Bethesda, MD, USA: 2012.
    1. Gulseth M.P., Grice G.R., Dager W.E. Pharmacogenomics of warfarin: Uncovering a piece of the warfarin mystery. Am. J. Health-Syst. Pharm. Ajhp Off. J. Am. Soc. Health-Syst. Pharm. 2009;66:123–133. doi: 10.2146/ajhp080127.
    1. Anderson J.L., Horne B.D., Stevens S.M., Grove A.S., Barton S., Nicholas Z.P., Kahn S.F., May H.T., Samuelson K.M., Muhlestein J.B., et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–2570. doi: 10.1161/CIRCULATIONAHA.107.737312.
    1. Huang S.-W., Chen H.-S., Wang X.-Q., Huang L., Xu D.-L., Hu X.-J., Huang Z.-H., He Y., Chen K.-M., Xiang D.-K., et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: A prospective study in Chinese patients. Pharm. Genom. 2009;19:226–234. doi: 10.1097/FPC.0b013e328326e0c7.
    1. Berg R.L., Yale S.H., Rottscheit C.M., Glurich I.E., Schmelzer J.R., Burmester J.K., Caldwell M.D. A randomized controlled trial of genotype-based Coumadin initiation. Genet. Med. Off. J. Am. Coll. Med. Genet. 2011;13:509–518.
    1. Cavallari L.H., Shin J., Perera M.A. Role of pharmacogenomics in the management of traditional and novel oral anticoagulants. Pharmacotherapy. 2011;31:1192–1207. doi: 10.1592/phco.31.12.1192.
    1. Relling M.V., Klein T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 2011;89:464–467. doi: 10.1038/clpt.2010.279.
    1. Cullell N., Carrera C., Muino E., Torres N., Krupinski J., Fernandez-Cadenas I. Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct oral anticoagulants. Oncotarget. 2018;9:29238–29258. doi: 10.18632/oncotarget.25579.
    1. Loo S.Y., Dell’Aniello S., Huiart L., Renoux C. Trends in the prescription of novel oral anticoagulants in UK primary care. Br J Clin Pharm. 2017;83:2096–2106. doi: 10.1111/bcp.13299.
    1. Ziakas P.D., Kourbeti I.S., Poulou L.S., Vlachogeorgos G.S., Mylonakis E. Medicare part D prescribing for direct oral anticoagulants in the United States: Cost, use and the “rubber effect”. PLoS ONE. 2018;13:e0198674. doi: 10.1371/journal.pone.0198674.
    1. Pare G., Eriksson N., Lehr T., Connolly S., Eikelboom J., Ezekowitz M.D., Axelsson T., Haertter S., Oldgren J., Reilly P., et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127:1404–1412. doi: 10.1161/CIRCULATIONAHA.112.001233.
    1. Dimatteo C., D’Andrea G., Vecchione G., Paoletti O., Cappucci F., Tiscia G.L., Buono M., Grandone E., Testa S., Margaglione M. Pharmacogenetics of dabigatran etexilate interindividual variability. Thromb. Res. 2016;144:1–5. doi: 10.1016/j.thromres.2016.05.025.
    1. Sweezy T., Mousa S.A. Genotype-guided use of oral antithrombotic therapy: A pharmacoeconomic perspective. Pers. Med. 2014;11:223–235. doi: 10.2217/pme.13.106.
    1. Ganetsky M., Babu K.M., Salhanick S.D., Brown R.S., Boyer E.W. Dabigatran: Review of pharmacology and management of bleeding complications of this novel oral anticoagulant. J. Med. Toxicol. Off. J. Am. Coll. Med. Toxicol. 2011;7:281–287. doi: 10.1007/s13181-011-0178-y.
    1. Armbruster A.L., Buehler K.S., Min S.H., Riley M., Daly M.W. Evaluation of Dabigatran for Appropriateness of Use and Bleeding Events in a Community Hospital Setting. Am. Health Drug Benefits. 2014;7:376–384.
    1. Bendel S.D., Bona R., Baker W.L. Dabigatran: An oral direct thrombin inhibitor for use in atrial fibrillation. Adv. Ther. 2011;28:460–472. doi: 10.1007/s12325-011-0025-1.
    1. Ahmed S., Levin V., Malacoff R., Martinez M.W. Dabigatran: A new chapter in anticoagulation. Cardiovasc. Hematol. Agents Med. Chem. 2012;10:116–123. doi: 10.2174/187152512800388911.
    1. Cheng J.W., Vu H. Dabigatran etexilate: An oral direct thrombin inhibitor for the management of thromboembolic disorders. Clin. Ther. 2012;34:766–787. doi: 10.1016/j.clinthera.2012.02.022.
    1. Schulman S., Majeed A. A benefit-risk assessment of dabigatran in the prevention of venous thromboembolism in orthopaedic surgery. Drug Saf. 2011;34:449–463. doi: 10.2165/11587290-000000000-00000.
    1. Nagarakanti R., Ellis C.R. Dabigatran in clinical practice. Clin. Ther. 2012;34:2051–2060. doi: 10.1016/j.clinthera.2012.09.008.
    1. Kyrle P.A., Binder K., Eichinger S., Függer R., Gollackner B., Hiesmayr J.M., Huber K., Lang W., Perger P., Quehenberger P., et al. Dabigatran: Patient management in specific clinical settings. Wien. Klin. Wochenschr. 2014;126:503–508. doi: 10.1007/s00508-014-0581-x.
    1. Stangier J., Rathgen K., Stähle H., Gansser D., Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br. J. Clin. Pharmacol. 2007;64:292–303. doi: 10.1111/j.1365-2125.2007.02899.x.
    1. Stangier J., Stähle H., Rathgen K., Fuhr R. Pharmacokinetics and Pharmacodynamics of the Direct Oral Thrombin Inhibitor Dabigatran in Healthy Elderly Subjects. Clin. Pharmacokinet. 2008;47:47–59. doi: 10.2165/00003088-200847010-00005.
    1. Blech S., Ebner T., Ludwig-Schwellinger E., Stangier J., Roth W. The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab. Dispos. Biol. Fate Chem. 2008;36:386–399. doi: 10.1124/dmd.107.019083.
    1. Reilly P.A., Lehr T., Haertter S., Connolly S.J., Yusuf S., Eikelboom J.W., Ezekowitz M.D., Nehmiz G., Wang S., Wallentin L., et al. The effect of dabigatran plasma concentrations and patient characteristics on the frequency of ischemic stroke and major bleeding in atrial fibrillation patients: The RE-LY Trial (Randomized Evaluation of Long-Term Anticoagulation Therapy) J. Am. Coll. Cardiol. 2014;63:321–328. doi: 10.1016/j.jacc.2013.07.104.
    1. Knauf F., Chaknos C.M., Berns J.S., Perazella M.A. Dabigatran and kidney disease: A bad combination. Clin. J. Am. Soc. Nephrol. CJASN. 2013;8:1591–1597. doi: 10.2215/CJN.01260213.
    1. Gosselin R.C., Adcock D.M., Bates S.M., Douxfils J., Favaloro E.J., Gouin-Thibault I., Guillermo C., Kawai Y., Lindhoff-Last E., Kitchen S., et al. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2018;118:437–450. doi: 10.1055/s-0038-1627480.
    1. Hapgood G., Butler J., Malan E., Chunilal S., Tran H. The effect of dabigatran on the activated partial thromboplastin time and thrombin time as determined by the Hemoclot thrombin inhibitor assay in patient plasma samples. Thromb. Haemost. 2013;110:308–315.
    1. Ciurus T., Sobczak S., Cichocka-Radwan A., Lelonek M. New oral anticoagulants—A practical guide. Pol. J. Cardio-Thorac. Surg. 2015;12:111–118. doi: 10.5114/kitp.2015.52851.
    1. Dabigatran and atrial fibrillation: The alternative to warfarin for selected patients. Prescrire Int. 2012;21:33–36.
    1. Hellwig T., Gulseth M. Pharmacokinetic and pharmacodynamic drug interactions with new oral anticoagulants: What do they mean for patients with atrial fibrillation? Ann. Pharmacother. 2013;47:1478–1487. doi: 10.1177/1060028013504741.
    1. Wessler J.D., Grip L.T., Mendell J., Giugliano R.P. The P-Glycoprotein Transport System and Cardiovascular Drugs. J. Am. Coll. Cardiol. 2013;61:2495–2502. doi: 10.1016/j.jacc.2013.02.058.
    1. Shi J., Wang X., Nguyen J.H., Bleske B.E., Liang Y., Liu L., Zhu H.J. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem. Pharmacol. 2016;119:76–84. doi: 10.1016/j.bcp.2016.09.003.
    1. Sychev D.A., Levanov A.N., Shelekhova T.V., Bochkov P.O., Denisenko N.P., Ryzhikova K.A., Mirzaev K.B., Grishina E.A., Gavrilov M.A., Ramenskaya G.V., et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. Pharm. Pers. Med. 2018;11:127–137.
    1. Ross S., Pare G. Pharmacogenetics of antiplatelets and anticoagulants: A report on clopidogrel, warfarin and dabigatran. Pharmacogenomics. 2013;14:1565–1572. doi: 10.2217/pgs.13.149.
    1. Asic A., Marjanovic D., Mirat J., Primorac D. Pharmacogenetics of novel oral anticoagulants: A review of identified gene variants & future perspectives. Per Med. 2018;15:209–221.
    1. Gouin-Thibault I., Delavenne X., Blanchard A., Siguret V., Salem J.E., Narjoz C., Gaussem P., Beaune P., Funck-Brentano C., Azizi M., et al. Interindividual variability in dabigatran and rivaroxaban exposure: Contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J. Thromb. Haemost. 2017;15:273–283. doi: 10.1111/jth.13577.
    1. Trujillo T., Dobesh P.P. Clinical use of rivaroxaban: Pharmacokinetic and pharmacodynamic rationale for dosing regimens in different indications. Drugs. 2014;74:1587–1603. doi: 10.1007/s40265-014-0278-5.
    1. Thomas T.F., Ganetsky V., Spinler S.A. Rivaroxaban: An Oral Factor Xa Inhibitor. Clin. Ther. 2013;35:4–27. doi: 10.1016/j.clinthera.2012.12.005.
    1. Samama M.M. The mechanism of action of rivaroxaban—An oral, direct Factor Xa inhibitor—Compared with other anticoagulants. Thromb. Res. 2011;127:497–504. doi: 10.1016/j.thromres.2010.09.008.
    1. Vimalesvaran K., Dockrill S.J., Gorog D.A. Role of rivaroxaban in the management of atrial fibrillation: Insights from clinical practice. Vasc. Health Risk Manag. 2018;14:13–21. doi: 10.2147/VHRM.S134394.
    1. Kreutz R. Pharmacodynamic and pharmacokinetic basics of rivaroxaban. Fundam. Clin. Pharmacol. 2012;26:27–32. doi: 10.1111/j.1472-8206.2011.00981.x.
    1. Mueck W., Stampfuss J., Kubitza D., Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin. Pharmacokinet. 2014;53:1–16. doi: 10.1007/s40262-013-0100-7.
    1. Stampfuss J., Kubitza D., Becka M., Mueck W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int. J. Clin. Pharmacol. Ther. 2013;51:549–561. doi: 10.5414/CP201812.
    1. Jiang J., Hu Y., Zhang J., Yang J., Mueck W., Kubitza D., Bauer R., Meng L., Hu P., Bauer R.J. Safety, pharmacokinetics and pharmacodynamics of single doses of rivaroxaban—An oral, direct factor Xa inhibitor—In elderly Chinese subjects. Thromb. Haemost. 2010;103:234–241. doi: 10.1160/TH09-03-0196.
    1. Korber M.K., Langer E., Kaufner L., Sander M., Von Heymann C. In vitro reversal of supratherapeutic rivaroxaban levels with coagulation factor concentrates. Blood Transfus. 2016;14:481–486.
    1. Ghadimi K., Dombrowski K.E., Levy J.H., Welsby I.J. Andexanet alfa for the reversal of Factor Xa inhibitor related anticoagulation. Expert Rev. Hematol. 2016;9:115–122. doi: 10.1586/17474086.2016.1135046.
    1. Derogis P.B., Sanches L.R., de Aranda V.F., Colombini M.P., Mangueira C.L.P., Katz M., Faulhaber A.C.L., Mendes C.E.A., Ferreira C.E.D.S., França C.N., et al. Determination of rivaroxaban in patient’s plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS) PLoS ONE. 2017;12:e0171272. doi: 10.1371/journal.pone.0171272.
    1. Ing Lorenzini K., Daali Y., Fontana P., Desmeules J., Samer C. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front. Pharmacol. 2016;7:494. doi: 10.3389/fphar.2016.00494.
    1. Scaglione F. New Oral Anticoagulants: Comparative Pharmacology with Vitamin K Antagonists. Clin. Pharmacokinet. 2013;52:69–82. doi: 10.1007/s40262-012-0030-9.
    1. Mueck W., Kubitza D., Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects. Br. J. Clin. Pharmacol. 2013;76:455–466. doi: 10.1111/bcp.12075.
    1. Sychev D.A., Vardanyan A., Rozhkov A., Hachatryan E., Badanyan A., Smirnov V., Ananichuk A., Denisenko N. CYP3A Activity and Rivaroxaban Serum Concentrations in Russian Patients with Deep Vein Thrombosis. Genet. Test. Mol. Biomark. 2018;22:51–54. doi: 10.1089/gtmb.2017.0152.
    1. Deedwania P., Huang G.W. An evidence-based review of apixaban and its potential in the prevention of stroke in patients with atrial fibrillation. Core Evid. 2012;7:49–59. doi: 10.2147/CE.S25637.
    1. Pinyol C., Cepeda J.M., Roldan I., Roldan V., Jimenez S., Gonzalez P., Soto J. A Systematic Literature Review on the Cost-Effectiveness of Apixaban for Stroke Prevention in Non-valvular Atrial Fibrillation. Cardiol. Ther. 2016;5:171–186. doi: 10.1007/s40119-016-0066-2.
    1. Hurst K.V., O’Callaghan J.M., Handa A. Quick reference guide to apixaban. Vasc. Health Risk Manag. 2017;13:263–267. doi: 10.2147/VHRM.S121944.
    1. Greig S.L., Garnock-Jones K.P. Apixaban: A Review in Venous Thromboembolism. Drugs. 2016;76:1493–1504. doi: 10.1007/s40265-016-0644-6.
    1. Fazeel Z. Apixaban: An oral anticoagulant having unique mechanism of action with better safety and efficacy profile. Mamc J. Med. Sci. 2016;2:63–68. doi: 10.4103/2394-7438.182723.
    1. Mueck W., Schwers S., Stampfuss J. Rivaroxaban and other novel oral anticoagulants: Pharmacokinetics in healthy subjects, specific patient populations and relevance of coagulation monitoring. Thromb. J. 2013;11:10. doi: 10.1186/1477-9560-11-10.
    1. Raghavan N., Frost C.E., Yu Z., He K., Zhang H., Humphreys W.G., Pinto D., Chen S., Bonacorsi S., Wong P.C., et al. Apixaban Metabolism and Pharmacokinetics after Oral Administration to Humans. Drug Metab. Dispos. 2009;37:74–81. doi: 10.1124/dmd.108.023143.
    1. Siegal D.M., Curnutte J.T., Connolly S.J., Lu G., Conley P.B., Wiens B.L., Mathur V.S., Castillo J., Bronson M.D., Leeds J.M., et al. Andexanet Alfa for the Reversal of Factor Xa Inhibitor Activity. N. Engl. J. Med. 2015;373:2413–2424. doi: 10.1056/NEJMoa1510991.
    1. Wang L., Raghavan N., He K., Luettgen J.M., Humphreys W.G., Knabb R.M., Pinto D.J., Zhang D. Sulfation of o-Demethyl Apixaban: Enzyme Identification and Species Comparison. Drug Metab. Dispos. 2009;37:802–808. doi: 10.1124/dmd.108.025593.
    1. Carlini E.J., Raftogianis R.B., Wood T.C., Jin F., Zheng W., Rebbeck T.R., Weinshilboum R.M. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics. 2001;11:57–68. doi: 10.1097/00008571-200102000-00007.
    1. Nagar S., Walther S., Blanchard R.L. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol. Pharmacol. 2006;69:2084–2092. doi: 10.1124/mol.105.019240.
    1. Raftogianis R.B., Wood T.C., Otterness D.M., Van Loon J.A., Weinshilboum R.M. Phenol Sulfotransferase Pharmacogenetics in Humans: Association of Common SULT1A1 Alleles with TS PST Phenotype. Biochem. Biophys. Res. Commun. 1997;239:298–304. doi: 10.1006/bbrc.1997.7466.
    1. Dimatteo C., D’Andrea G., Vecchione G., Paoletti O., Tiscia G.L., Santacroce R., Correale M., Brunetti N., Grandone E., Testa S., et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thromb. Res. 2016;145:24–26. doi: 10.1016/j.thromres.2016.07.005.
    1. Kryukov A.V., Sychev D.A., Andreev D.A., Ryzhikova K.A., Grishina E.A., Ryabova A.V., Loskutnikov M.A., Smirnov V.V., Konova O.D., Matsneva I.A., et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharm. Pers. Med. 2018;11:43–49. doi: 10.2147/PGPM.S157111.
    1. Poulakos M., Walker J.N., Baig U., David T. Edoxaban: A direct oral anticoagulant. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2017;74:117–129. doi: 10.2146/ajhp150821.
    1. Hughes G.J., Hilas O. Edoxaban: An Investigational Factor Xa Inhibitor. Pharm. Ther. 2014;39:686–715.
    1. Stacy Z.A., Call W.B., Hartmann A.P., Peters G.L., Richter S.K. Edoxaban: A Comprehensive Review of the Pharmacology and Clinical Data for the Management of Atrial Fibrillation and Venous Thromboembolism. Cardiol. Ther. 2016;5:1–18. doi: 10.1007/s40119-016-0058-2.
    1. Furugohri T., Isobe K., Honda Y., Kamisato-Matsumoto C., Sugiyama N., Nagahara T., Morishima Y., Shibano T. DU-176b, a potent and orally active factor Xa inhibitor: In vitro and in vivo pharmacological profiles. J. Thromb. Haemost. 2008;6:1542–1549.
    1. Morishima Y., Honda Y., Kamisato C. Prevention of Stent Thrombosis in Rats by a Direct Oral Factor Xa Inhibitor Edoxaban. Pharmacology. 2018;103:17–22. doi: 10.1159/000494059.
    1. Honda Y., Kamisato C., Morishima Y. Prevention of arterial thrombosis by edoxaban, an oral factor Xa inhibitor in rats: Monotherapy and in combination with antiplatelet agents. Eur. J. Pharmacol. 2016;786:246–252. doi: 10.1016/j.ejphar.2016.06.011.
    1. Parasrampuria D.A., Truitt K.E. Pharmacokinetics and Pharmacodynamics of Edoxaban, a Non-Vitamin K Antagonist Oral Anticoagulant that Inhibits Clotting Factor Xa. Clin. Pharm. 2016;55:641–655. doi: 10.1007/s40262-015-0342-7.
    1. Mendell J., Tachibana M., Shi M., Kunitada S. Effects of food on the pharmacokinetics of edoxaban, an oral direct factor Xa inhibitor, in healthy volunteers. J. Clin. Pharmacol. 2011;51:687–694. doi: 10.1177/0091270010370974.
    1. Vandell A.G., Lee J., Shi M., Rubets I., Brown K.S., Walker J.R. An integrated pharmacokinetic/pharmacogenomic analysis of ABCB1 and SLCO1B1 polymorphisms on edoxaban exposure. Pharm. J. 2018;18:153–159. doi: 10.1038/tpj.2016.82.
    1. Vandell A.G., Walker J., Brown K.S., Zhang G., Lin M., Grosso M.A., Mercuri M.F. Genetics and clinical response to warfarin and edoxaban in patients with venous thromboembolism. Heart. 2017;103:1800–1805. doi: 10.1136/heartjnl-2016-310901.
    1. Mega J.L., Walker J.R., Ruff C.T., Vandell A.G., Nordio F., Deenadayalu N., Murphy S.A., Lee J., Mercuri M.F., Giugliano R.P., et al. Genetics and the clinical response to warfarin and edoxaban: Findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet (Lond. Engl.) 2015;385:2280–2287. doi: 10.1016/S0140-6736(14)61994-2.
    1. Sennesael A.-L., Panin N., Vancraeynest C., Pochet L., Spinewine A., Haufroid V., Elens L. Effect of ABCB1 genetic polymorphisms on the transport of rivaroxaban in HEK293 recombinant cell lines. Sci. Rep. 2018;8:10514. doi: 10.1038/s41598-018-28622-4.

Source: PubMed

3
구독하다