Iodine excess as an environmental risk factor for autoimmune thyroid disease

Yuqian Luo, Akira Kawashima, Yuko Ishido, Aya Yoshihara, Kenzaburo Oda, Naoki Hiroi, Tetsuhide Ito, Norihisa Ishii, Koichi Suzuki, Yuqian Luo, Akira Kawashima, Yuko Ishido, Aya Yoshihara, Kenzaburo Oda, Naoki Hiroi, Tetsuhide Ito, Norihisa Ishii, Koichi Suzuki

Abstract

The global effort to prevent iodine deficiency disorders through iodine supplementation, such as universal salt iodization, has achieved impressive progress during the last few decades. However, iodine excess, due to extensive environmental iodine exposure in addition to poor monitoring, is currently a more frequent occurrence than iodine deficiency. Iodine excess is a precipitating environmental factor in the development of autoimmune thyroid disease. Excessive amounts of iodide have been linked to the development of autoimmune thyroiditis in humans and animals, while intrathyroidal depletion of iodine prevents disease in animal strains susceptible to severe thyroiditis. Although the mechanisms by which iodide induces thyroiditis are still unclear, several mechanisms have been proposed: (1) excess iodine induces the production of cytokines and chemokines that can recruit immunocompetent cells to the thyroid; (2) processing excess iodine in thyroid epithelial cells may result in elevated levels of oxidative stress, leading to harmful lipid oxidation and thyroid tissue injuries; and (3) iodine incorporation in the protein chain of thyroglobulin may augment the antigenicity of this molecule. This review will summarize the current knowledge regarding excess iodide as an environmental toxicant and relate it to the development of autoimmune thyroid disease.

References

    1. Heyland A., Moroz L.L. Cross-kingdom hormonal signaling: An insight from thyroid hormone functions in marine larvae. J. Exp. Biol. 2005;208:4355–4361. doi: 10.1242/jeb.01877.
    1. Hulbert A.J. Thyroid hormones and their effects: A new perspective. Biol. Rev. Camb. Philos. Soc. 2000;75:519–631. doi: 10.1017/S146479310000556X.
    1. Everett L.A., Glaser B., Beck J.C., Idol J.R., Buchs A., Heyman M., Adawi F., Hazani E., Nassir E., Baxevanis A.D., et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS) Nat. Genet. 1997;17:411–422. doi: 10.1038/ng1297-411.
    1. Royaux I.E., Suzuki K., Mori A., Katoh R., Everett L.A., Kohn L.D., Green E.D. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology. 2000;141:839–845. doi: 10.1210/endo.141.2.7303.
    1. Yoshida A., Hisatome I., Taniguchi S., Sasaki N., Yamamoto Y., Miake J., Fukui H., Shimizu H., Okamura T., Okura T., et al. Mechanism of iodide/chloride exchange by pendrin. Endocrinology. 2004;145:4301–4308. doi: 10.1210/en.2004-0048.
    1. Yoshida A., Taniguchi S., Hisatome I., Royaux I.E., Green E.D., Kohn L.D., Suzuki K. Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J. Clin Endocrinol. Metab. 2002;87:3356–3361.
    1. Yoshida A., Hattori K., Hisatome I., Taniguchi S., Ueta Y., Hukui H., Santo Y., Igawa O., Shigemasa C., Kosugi S., et al. A TSH/dibutyryl cAMP activated Cl−/I− channel in FRTL-5 cells. Biochem. Biophys. Res. Commun. 1999;259:631–635. doi: 10.1006/bbrc.1999.0836.
    1. Robbins J., Rall J.E., Gorden P. The thyroid and iodine metabolism. In: Bondy P.K., Rosenberg L.E., editors. Duncan’s Diseases of Metabolism. Saunders; Philadelphia, PA, USA: 1974. pp. 1009–1104.
    1. Koibuchi N., Chin W.W. Thyroid hormone action and brain development. Trends Endocrinol. Metab. 2000;11:123–128. doi: 10.1016/S1043-2760(00)00238-1.
    1. Delange F. The disorders induced by iodine deficiency. Thyroid. 1994;4:107–128. doi: 10.1089/thy.1994.4.107.
    1. Pearce E.N., Andersson M., Zimmermann M.B. Global iodine nutrition: Where do we stand in 2013? Thyroid. 2013;23:523–528. doi: 10.1089/thy.2013.0128.
    1. Zimmermann M.B. Iodine deficiency and excess in children: Worldwide status in 2013. Endocr. Pract. 2013;19:839–846. doi: 10.4158/EP13180.RA.
    1. Zimmermann M.B., Andersson M. Update on iodine status worldwide. Curr. Opin. Endocrinol. Diabetes Obes. 2012;19:382–387. doi: 10.1097/MED.0b013e328357271a.
    1. Teas J., Pino S., Critchley A., Braverman L.E. Variability of iodine content in common commercially available edible seaweeds. Thyroid. 2004;14:836–841. doi: 10.1089/thy.2004.14.836.
    1. Zava T.T., Zava D.T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Res. 2011;4:14:1–14:7.
    1. Matsubayashi S., Mukuta T., Watanabe H., Fuchigami H., Taniguchi J., Chinen M., Ninomiya H., Sasaki H. Iodine-induced hypothyroidism as a result of excessive intake of confectionery made with tangle weed, Kombu, used as a low calorie food during a bulimic period in a patient with anorexia nervosa. Eat. Weight Disord. 1998;3:50–52. doi: 10.1007/BF03339988.
    1. Michikawa T., Inoue M., Shimazu T., Sawada N., Iwasaki M., Sasazuki S., Yamaji T., Tsugane S., Japan Public Health Center-based Prospective Study Group Seaweed consumption and the risk of thyroid cancer in women: The Japan Public Health Center-based Prospective Study. Eur. J. Cancer Prev. 2012;21:254–260. doi: 10.1097/CEJ.0b013e32834a8042.
    1. Tsubota-Utsugi M., Imai E., Nakade M., Matsumoto T., Tsuboyama-Kasaoka N., Nishi N., Tsubono Y. Evaluation of the prevalence of iodine intakes above the tolerable upper intake level from four 3-day dietary records in a Japanese population. J. Nutr. Sci. Vitaminol. Tokyo. 2013;59:310–316. doi: 10.3177/jnsv.59.310.
    1. Lv S., Wang Y., Xu D., Rutherford S., Chong Z., Du Y., Jia L., Zhao J. Drinking water contributes to excessive iodine intake among children in Hebei, China. Eur. J. Clin. Nutr. 2013;67:961–965. doi: 10.1038/ejcn.2013.127.
    1. Sui H.X., Li J.W., Mao W.F., Zhu J.H., He Y.N., Song X.Y., Ma N., Zhang L., Liu S.N., Liu Z.P., et al. Dietary iodine intake in the Chinese population. Biomed. Environ. Sci. 2011;24:617–623.
    1. Kassim I.A., Moloney G., Busili A., Nur A.Y., Paron P., Jooste P., Gadain H., Seal A.J. Iodine intake in Somalia is excessive and associated with the source of household drinking water. J. Nutr. 2014;144:375–381. doi: 10.3945/jn.113.176693.
    1. Henjum S., Barikmo I., Gjerlaug A.K., Mohamed-Lehabib A., Oshaug A., Strand T.A., Torheim L.E. Endemic goitre and excessive iodine in urine and drinking water among Saharawi refugee children. Public Health Nutr. 2010;13:1472–1477. doi: 10.1017/S1368980010000650.
    1. Andersen S., Guan H., Teng W., Laurberg P. Speciation of iodine in high iodine groundwater in china associated with goitre and hypothyroidism. Biol. Trace Elem. Res. 2009;128:95–103. doi: 10.1007/s12011-008-8257-x.
    1. Georgitis W.J., McDermott M.T., Kidd G.S. An iodine load from water-purification tablets alters thyroid function in humans. Mil. Med. 1993;158:794–797.
    1. Zhao J., Chen Z., Maberly G. Iodine-rich drinking water of natural origin in China. Lancet. 1998;352:2024. doi: 10.1016/S0140-6736(05)61375-X.
    1. Li S., Zheng Q., Xu J., Gorstein J., Wang H., Dong H. Iodine excess or not: Analysis on the necessity of reducing the iodine content in edible salt based on the national monitoring results. Asia Pac. J. Clin. Nutr. 2011;20:501–506.
    1. Arrizabalaga J.J., Larranaga N., Espada M., Amiano P., Bidaurrazaga J., Latorre K., Gorostiza E. Changes in iodine nutrition status in schoolchildren from the Basque Country. Endocrinol. Nutr. 2012;59:474–484. doi: 10.1016/j.endonu.2012.03.012.
    1. Franke K., Meyer U., Wagner H., Flachowsky G. Influence of various iodine supplementation levels and two different iodine species on the iodine content of the milk of cows fed rapeseed meal or distillers dried grains with solubles as the protein source. J. Dairy Sci. 2009;92:4514–4523. doi: 10.3168/jds.2009-2027.
    1. Launer P., Richter O. [Iodine concentration in the blood serum of milk cows from Saxony as well as in cows’ milk and milk products (baby food)] Berl. Munch. Tierarztl. Wochenschr. 2005;118:502–508.
    1. Perrine C.G., Sullivan K.M., Flores R., Caldwell K.L., Grummer-Strawn L.M. Intakes of dairy products and dietary supplements are positively associated with iodine status among U.S. children. J. Nutr. 2013;143:1155–1160. doi: 10.3945/jn.113.176289.
    1. Garcia-Solis P., Solis S.J., Garcia-Gaytan A.C., Reyes-Mendoza V.A., Robles-Osorio L., Villarreal-Rios E., Leal-Garcia L., Hernandez-Montiel H.L. Iodine nutrition in elementary state schools of Queretaro, Mexico: Correlations between urinary iodine concentration with global nutrition status and social gap index. Arq. Bras. Endocrinol. Metabol. 2013;57:473–482. doi: 10.1590/S0004-27302013000600010.
    1. Kassim I.A., Ruth L.J., Creeke P.I., Gnat D., Abdalla F., Seal A.J. Excessive iodine intake during pregnancy in Somali refugees. Matern. Child Nutr. 2012;8:49–56. doi: 10.1111/j.1740-8709.2010.00259.x.
    1. Li S., Fan Y., Chen H., Li X., Wang J., Gu Y., Li S., Li M., Wang J., Shu Z. Is the current iodine content in edible salt appropriate for eliminating iodine deficiency in China. Asia Pac. J. Clin. Nutr. 2010;19:231–235.
    1. Gatseva P.D., Argirova M.D. Benefits and risks from the national strategy for improvement of iodine nutrition in Bulgaria: Study on schoolchildren living in a rural area. Public Health. 2009;123:456–458. doi: 10.1016/j.puhe.2009.03.012.
    1. Camargo R.Y., Tomimori E.K., Neves S.C., Rubio I.G.S., Galrao A.L., Knobel M., Medeiros-Neto G. Thyroid and the environment: Exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo, Brazil. Eur. J. Endocrinol. 2008;159:293–299. doi: 10.1530/EJE-08-0192.
    1. Silva K.D., Munasinghe D.L. Urinary iodine concentration of pregnant women and female adolescents as an indicator of excessive iodine intake in Sri Lanka. Food Nutr. Bull. 2006;27:12–18.
    1. Assey V.D., Peterson S., Kimboka S., Ngemera D., Mgoba C., Ruhiye D.M., Ndossi G.D., Greiner T., Tylleskar T. Tanzania national survey on iodine deficiency: Impact after twelve years of salt iodation. BMC Public Health. 2009;9 doi: 10.1186/1471-2458-9-319.
    1. Delange F., de Benoist B., Alnwick D. Risks of iodine-induced hyperthyroidism after correction of iodine deficiency by iodized salt. Thyroid. 1999;9:545–556.
    1. Izzeldin H.S., Crawford M.A., Jooste P.L. Population living in the Red Sea State of Sudan may need urgent intervention to correct the excess dietary iodine intake. Nutr. Health. 2007;18:333–341. doi: 10.1177/026010600701800403.
    1. Seal A.J., Creeke P.I., Gnat D., Abdalla F., Mirghani Z. Excess dietary iodine intake in long-term African refugees. Public Health Nutr. 2006;9:35–39.
    1. Leung A.M., Pearce E.N., Braverman L.E. Iodine content of prenatal multivitamins in the United States. N. Engl. J. Med. 2009;360:939–940. doi: 10.1056/NEJMc0807851.
    1. Connelly K.J., Boston B.A., Pearce E.N., Sesser D., Snyder D., Braverman L.E., Pino S., LaFranchi S.H. Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. J. Pediatr. 2012;161:760–762. doi: 10.1016/j.jpeds.2012.05.057.
    1. Minelli R., Gardini E., Bianconi L., Salvi M., Roti E. Subclinical hypothyroidism, overt thyrotoxicosis and subclinical hypothyroidism: The subsequent phases of thyroid function in a patient chronically treated with amiodarone. J. Endocrinol. Investig. 1992;15:853–855. doi: 10.1007/BF03348819.
    1. Sato K., Yamazaki K., Kanaji Y., Ohnishi S., Kasanuki H., Demura H. Amiodarone-induced thyrotoxicosis associated with thyrotropin receptor antibody. Thyroid. 1998;8:1123–1126. doi: 10.1089/thy.1998.8.1123.
    1. Padovani R.P., Kasamatsu T.S., Nakabashi C.C., Camacho C.P., Andreoni D.M., Malouf E.Z., Marone M.M., Maciel R.M., Biscolla R.P. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid. 2012;22:926–930. doi: 10.1089/thy.2012.0099.
    1. Alkhuja S., Pyram R., Odeyemi O. In the eye of the storm: Iodinated contrast medium induced thyroid storm presenting as cardiopulmonary arrest. Heart Lung. 2013;42:267–269. doi: 10.1016/j.hrtlng.2013.04.002.
    1. Gartner W., Weissel M. Do iodine-containing contrast media induce clinically relevant changes in thyroid function parameters of euthyroid patients within the first week? Thyroid. 2004;14:521–524. doi: 10.1089/1050725041517075.
    1. Koroscil T.M., Pelletier P.R., Slauson J.W., Hennessey J. Short-term effects of coronary angiographic contrast agents on thyroid function. Endocr. Pract. 1997;3:219–221. doi: 10.4158/EP.3.4.219.
    1. Ozkan S., Oysu A.S., Kayatas K., Demirtunc R., Eren M., Uslu H., Altuntas Y. Thyroid functions after contrast agent administration for coronary angiography: A prospective observational study in euthyroid patients. Anadolu Kardiyol. Derg. 2013;13:363–369.
    1. Rhee C.M., Bhan I., Alexander E.K., Brunelli S.M. Association between iodinated contrast media exposure and incident hyperthyroidism and hypothyroidism. Arch. Intern. Med. 2012;172:153–159. doi: 10.1001/archinternmed.2011.677.
    1. Ader A.W., Paul T.L., Reinhardt W., Safran M., Pino S., McArthur W., Braverman L.E. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J. Clin. Endocrinol. Metab. 1988;66:632–635. doi: 10.1210/jcem-66-3-632.
    1. Linder N., Davidovitch N., Reichman B., Kuint J., Lubin D., Meyerovitch J., Sela B.A., Dolfin Z., Sack J. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J. Pediatr. 1997;131:434–439. doi: 10.1016/S0022-3476(97)80071-6.
    1. Nobukuni K., Kawahara S. Thyroid function in nurses: The influence of povidone-iodine hand washing and gargling. Dermatology. 2002;204(Suppl. 1):99–102. doi: 10.1159/000057735.
    1. Duntas L.H. Environmental factors and autoimmune thyroiditis. Nat. Clin. Pract. Endocrinol. Metab. 2008;4:454–460. doi: 10.1038/ncpendmet0896.
    1. Alsanosy R.M., Gaffar A.M., Khalafalla H.E., Mahfouz M.S., Zaid A.N., Bani I.A. Current iodine nutrition status and progress toward elimination of iodine deficiency disorders in Jazan, Saudi Arabia. BMC Public Health. 2012;12 doi: 10.1186/1471-2458-12-1006.
    1. Alsayed A., Gad A.M., Abdel-Baset H., Abdel-Fattah A., Ahmed A., Azab A. Excess urinary iodine is associated with autoimmune subclinical hypothyroidism among Egyptian women. Endocr. J. 2008;55:601–605. doi: 10.1507/endocrj.K07E-165.
    1. Bastemir M., Emral R., Erdogan G., Gullu S. High prevalence of thyroid dysfunction and autoimmune thyroiditis in adolescents after elimination of iodine deficiency in the Eastern Black Sea Region of Turkey. Thyroid. 2006;16:1265–1271. doi: 10.1089/thy.2006.16.1265.
    1. Laurberg P., Cerqueira C., Ovesen L., Rasmussen L.B., Perrild H., Andersen S., Pedersen I.B., Carle A. Iodine intake as a determinant of thyroid disorders in populations. Best. Pract. Res. Clin. Endocrinol. Metab. 2010;24:13–27. doi: 10.1016/j.beem.2009.08.013.
    1. Teng X., Shan Z., Chen Y., Lai Y., Yu J., Shan L., Bai X., Li Y., Li N., Li Z., et al. More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: A cross-sectional study based on two Chinese communities with different iodine intake levels. Eur. J. Endocrinol. 2011;164:943–950. doi: 10.1530/EJE-10-1041.
    1. Allen E.M., Appel M.C., Braverman L.E. The effect of iodide ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology. 1986;118:1977–1981. doi: 10.1210/endo-118-5-1977.
    1. Bagchi N., Brown T.R., Urdanivia E., Sundick R.S. Induction of autoimmune thyroiditis in chickens by dietary iodine. Science. 1985;230:325–327.
    1. Sundick R.S., Bagchi N., Brown T.R. The role of iodine in thyroid autoimmunity: From chickens to humans: A review. Autoimmunity. 1992;13:61–68. doi: 10.3109/08916939209014636.
    1. Allen E.M., Braverman L.E. The effect of iodine on lymphocytic thyroiditis in the thymectomized buffalo rat. Endocrinology. 1990;127:1613–1616. doi: 10.1210/endo-127-4-1613.
    1. Rasooly L., Burek C.L., Rose N.R. Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin. Immunol. Immunopathol. 1996;81:287–292. doi: 10.1006/clin.1996.0191.
    1. Braley-Mullen H., Sharp G.C., Medling B., Tang H. Spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Autoimmun. 1999;12:157–165. doi: 10.1006/jaut.1999.0272.
    1. Teng X., Shan Z., Teng W., Fan C., Wang H., Guo R. Experimental study on the effects of chronic iodine excess on thyroid function, structure, and autoimmunity in autoimmune-prone NOD.H-2h4 mice. Clin. Exp. Med. 2009;9:51–59. doi: 10.1007/s10238-008-0014-0.
    1. Wolff J. Iodide goiter and the pharmacologic effects of excess iodide. Am. J. Med. 1969;47:101–124. doi: 10.1016/0002-9343(69)90245-9.
    1. Wolff J., Chaikoff I.L., Goldberg R.C., Meier J.R. The temporary nature of the inhibitory action of excess iodine on organic iodine synthesis in the normal thyroid. Endocrinology. 1949;45:504–513. doi: 10.1210/endo-45-5-504.
    1. Schuppert F., Taniguchi S., Schroder S., Dralle H., von zur Muhlen A., Kohn L.D. In vivo and in vitro evidence for iodide regulation of major histocompatibility complex class I and class II expression in Graves’ disease. J. Clin. Endocrinol. Metab. 1996;81:3622–3628.
    1. Schuppert F., Ehrenthal D., Frilling A., Suzuki K., Napolitano G., Kohn L.D. Increased major histocompatibility complex (MHC) expression in nontoxic goiters is associated with iodide depletion, enhanced ability of the follicular thyroglobulin to increase MHC gene expression, and thyroid autoantibodies. J. Clin. Endocrinol. Metab. 2000;85:858–867. doi: 10.1210/jcem.85.2.6394.
    1. Bonita R.E., Rose N.R., Rasooly L., Caturegli P., Burek C.L. Kinetics of mononuclear cell infiltration and cytokine expression in iodine-induced thyroiditis in the NOD-H2h4 mouse. Exp. Mol. Pathol. 2003;74:1–12. doi: 10.1016/S0014-4800(03)80002-3.
    1. Xue H., Wang W., Shan Z., Li Y., Li Y., Teng X., Gao Y., Fan C., Teng W. Dynamic changes of CD4+CD25+ regulatory T cells in NOD.H-2h4 mice with iodine-induced autoimmune thyroiditis. Biol. Trace Elem. Res. 2011;143:292–301. doi: 10.1007/s12011-010-8815-x.
    1. Hutchings P.R., Cooke A., Dawe K., Champion B.R., Geysen M., Valerio R., Roitt I.M. A thyroxine-containing peptide can induce murine experimental autoimmune thyroiditis. J. Exp. Med. 1992;175:869–872. doi: 10.1084/jem.175.3.869.
    1. Yu S., Dunn R., Kehry M.R., Braley-Mullen H. B cell depletion inhibits spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Immunol. 2008;180:7706–7713. doi: 10.4049/jimmunol.180.11.7706.
    1. Yu S., Medling B., Yagita H., Braley-Mullen H. Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J. Autoimmun. 2001;16:37–46. doi: 10.1006/jaut.2000.0458.
    1. Mooij P., de Wit H.J., Drexhage H.A. An excess of dietary iodine accelerates the development of a thyroid-associated lymphoid tissue in autoimmune prone BB rats. Clin. Immunol. Immunopathol. 1993;69:189–198. doi: 10.1006/clin.1993.1169.
    1. Sharma R.B., Alegria J.D., Talor M.V., Rose N.R., Caturegli P., Burek C.L. Iodine and IFN-γ synergistically enhance intercellular adhesion molecule 1 expression on NOD.H2h4 mouse thyrocytes. J. Immunol. 2005;174:7740–7745. doi: 10.4049/jimmunol.174.12.7740.
    1. Yamazaki K., Tanigawa K., Suzuki K., Yamada E., Yamada T., Takano K., Obara T., Sato K. Iodide-induced chemokines and genes related to immunological function in cultured human thyroid follicles in the presence of thyrotropin. Thyroid. 2010;20:67–76. doi: 10.1089/thy.2009.0242.
    1. Yamazaki K., Yamada E., Kanaji Y., Yanagisawa T., Kato Y., Takano K., Obara T., Sato K. Genes regulated by thyrotropin and iodide in cultured human thyroid follicles: Analysis by cDNA microarray. Thyroid. 2003;13:149–158. doi: 10.1089/105072503321319459.
    1. Horie I., Abiru N., Nagayama Y., Kuriya G., Saitoh O., Ichikawa T., Iwakura Y., Eguchi K. T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology. 2009;150:5135–5142. doi: 10.1210/en.2009-0434.
    1. Yu S., Sharp G.C., Braley-Mullen H. Dual roles for IFN-γ, but not for IL-4, in spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Immunol. 2002;169:3999–4007. doi: 10.4049/jimmunol.169.7.3999.
    1. Ellis J.S., Hong S.H., Zaghouani H., Braley-Mullen H. Reduced effectiveness of CD4+Foxp3+ regulatory T cells in CD28-deficient NOD.H-2h4 mice leads to increased severity of spontaneous autoimmune thyroiditis. J. Immunol. 2013;191:4940–4949. doi: 10.4049/jimmunol.1301253.
    1. Yu S., Fang Y., Sharp G.C., Braley-Mullen H. Transgenic expression of TGF-β on thyrocytes inhibits development of spontaneous autoimmune thyroiditis and increases regulatory T cells in thyroids of NOD.H-2h4 mice. J. Immunol. 2010;184:5352–5359. doi: 10.4049/jimmunol.0903620.
    1. Nagayama Y., Horie I., Saitoh O., Nakahara M., Abiru N. CD4+CD25+ naturally occurring regulatory T cells and not lymphopenia play a role in the pathogenesis of iodide-induced autoimmune thyroiditis in NOD-H2h4 mice. J. Autoimmun. 2007;29:195–202. doi: 10.1016/j.jaut.2007.07.008.
    1. Many M.C., Maniratunga S., Varis I., Dardenne M., Drexhage H.A., Denef J.F. Two-step development of Hashimoto-like thyroiditis in genetically autoimmune prone non-obese diabetic mice: Effects of iodine-induced cell necrosis. J. Endocrinol. 1995;147:311–320. doi: 10.1677/joe.0.1470311.
    1. Yu X., Li L., Li Q., Zang X., Liu Z. TRAIL and DR5 promote thyroid follicular cell apoptosis in iodine excess-induced experimental autoimmune thyroiditis in NOD mice. Biol. Trace Elem. Res. 2011;143:1064–1076. doi: 10.1007/s12011-010-8941-5.
    1. Bagchi N., Brown T.R., Sundick R.S. Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology. 1995;136:5054–5060.
    1. Burek C.L., Rose N.R. Autoimmune thyroiditis and ROS. Autoimmun. Rev. 2008;7:530–537. doi: 10.1016/j.autrev.2008.04.006.
    1. Sharma R., Traore K., Trush M.A., Rose N.R., Burek C.L. Intracellular adhesion molecule-1 up-regulation on thyrocytes by iodine of non-obese diabetic.H2h4 mice is reactive oxygen species-dependent. Clin. Exp. Immunol. 2008;152:13–20. doi: 10.1111/j.1365-2249.2008.03590.x.
    1. Duthoit C., Estienne V., Delom F., Durand-Gorde J.M., Mallet B., Carayon P., Ruf J. Production of immunoreactive thyroglobulin C-terminal fragments during thyroid hormone synthesis. Endocrinology. 2000;141:2518–2525. doi: 10.1210/endo.141.7.7573.
    1. Duthoit C., Estienne V., Giraud A., Durand-Gorde J.M., Rasmussen A.K., Feldt-Rasmussen U., Carayon P., Ruf J. Hydrogen peroxide-induced production of a 40 kDa immunoreactive thyroglobulin fragment in human thyroid cells: The onset of thyroid autoimmunity? Biochem. J. 2001;360:557–562. doi: 10.1042/0264-6021:3600557.
    1. Basalaeva N.L., Sychugov G.V., Strizhikov V.K., Mikhailova E.N. Iodine concentration and signs of apoptosis in the thyroid and pituitary of female rats after different single doses of potassium iodide. Endocr. Regul. 2011;45:183–190. doi: 10.4149/endo_2011_04_183.
    1. Foley T.P., Jr. The relationship between autoimmune thyroid disease and iodine intake: A review. Endokrynol. Pol. 1992;43(Suppl. 1):53–69.
    1. Poncin S., Gerard A.C., Boucquey M., Senou M., Calderon P.B., Knoops B., Lengele B., Many M.C., Colin I.M. Oxidative stress in the thyroid gland: From harmlessness to hazard depending on the iodine content. Endocrinology. 2008;149:424–433. doi: 10.1210/en.2007-0951.
    1. Xia Y., Qu W., Zhao L.N., Han H., Yang X.F., Sun X.F., Hao L.P., Xu J. Iodine excess induces hepatic steatosis through disturbance of thyroid hormone metabolism involving oxidative stress in BALB/c mice. Biol. Trace Elem. Res. 2013;154:103–110. doi: 10.1007/s12011-013-9705-9.
    1. Many M.C., Mestdagh C., van den Hove M.F., Denef J.F. In vitro study of acute toxic effects of high iodide doses in human thyroid follicles. Endocrinology. 1992;131:621–630.
    1. Mahmoud I., Colin I., Many M.C., Denef J.F. Direct toxic effect of iodide in excess on iodine-deficient thyroid glands: Epithelial necrosis and inflammation associated with lipofuscin accumulation. Exp. Mol. Pathol. 1986;44:259–271. doi: 10.1016/0014-4800(86)90040-7.
    1. Kawashima A., Tanigawa K., Akama T., Yoshihara A., Ishii N., Suzuki K. Innate immune activation and thyroid autoimmunity. J. Clin. Endocrinol. Metab. 2011;96:3661–3671. doi: 10.1210/jc.2011-1568.
    1. Kawashima A., Tanigawa K., Akama T., Wu H., Sue M., Yoshihara A., Ishido Y., Kobiyama K., Takeshita F., Ishii K.J., et al. Fragments of genomic DNA released by injured cells activate innate immunity and suppress endocrine function in the thyroid. Endocrinology. 2011;152:1702–1712. doi: 10.1210/en.2010-1132.
    1. Kawashima A., Yamazaki K., Hara T., Akama T., Yoshihara A., Sue M., Tanigawa K., Wu H., Ishido Y., Takeshita F., et al. Demonstration of innate immune responses in the thyroid gland: Potential to sense danger and a possible trigger for autoimmune reactions. Thyroid. 2013;23:477–487. doi: 10.1089/thy.2011.0480.
    1. McLachlan S.M., Rapoport B. Breaking tolerance to thyroid antigens: Changing concepts in thyroid autoimmunity. Endocr. Rev. 2014;35:59–105. doi: 10.1210/er.2013-1055.
    1. Edelhoch H., Carlomagno M.S., Salvatore G. Iodine and the structure of thyroglobulin. Arch. Biochem. Biophys. 1969;134:264–265. doi: 10.1016/0003-9861(69)90279-3.
    1. Lamas L., Ingbar S.H. The effect of varying iodine content on the susceptibility of thyroglobulin to hydrolysis by thyroid acid protease. Endocrinology. 1978;102:188–197. doi: 10.1210/endo-102-1-188.
    1. Ebner S.A., Lueprasitsakul W., Alex S., Fang S.L., Appel M.C., Braverman L.E. Iodine content of rat thyroglobulin affects its antigenicity in inducing lymphocytic thyroiditis in the BB/Wor rat. Autoimmunity. 1992;13:209–214. doi: 10.3109/08916939209004826.
    1. Champion B.R., Rayner D.C., Byfield P.G., Page K.R., Chan C.T., Roitt I.M. Critical role of iodination for T cell recognition of thyroglobulin in experimental murine thyroid autoimmunity. J. Immunol. 1987;139:3665–3670.
    1. Barin J.G., Talor M.V., Sharma R.B., Rose N.R., Burek C.L. Iodination of murine thyroglobulin enhances autoimmune reactivity in the NOD.H2 mouse. Clin. Exp. Immunol. 2005;142:251–259. doi: 10.1111/j.1365-2249.2005.02908.x.
    1. Carayanniotis G. Recognition of thyroglobulin by T cells: The role of iodine. Thyroid. 2007;17:963–973. doi: 10.1089/thy.2007.0199.
    1. Gentile F., Conte M., Formisano S. Thyroglobulin as an autoantigen: What can we learn about immunopathogenicity from the correlation of antigenic properties with protein structure? Immunology. 2004;112:13–25. doi: 10.1111/j.1365-2567.2004.01861.x.
    1. Carayanniotis G. Molecular parameters linking thyroglobulin iodination with autoimmune thyroiditis. Hormones Athens. 2011;10:27–35. doi: 10.14310/horm.2002.1290.
    1. Champion B.R., Page K.R., Parish N., Rayner D.C., Dawe K., Biswas-Hughes G., Cooke A., Geysen M., Roitt I.M. Identification of a thyroxine-containing self-epitope of thyroglobulin which triggers thyroid autoreactive T cells. J. Exp. Med. 1991;174:363–370. doi: 10.1084/jem.174.2.363.
    1. Kong Y.C., McCormick D.J., Wan Q., Motte R.W., Fuller B.E., Giraldo A.A., David C.S. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis. Secondary role of iodination. J. Immunol. 1995;155:5847–5854.
    1. Dawe K.I., Hutchings P.R., Geysen M., Champion B.R., Cooke A., Roitt I.M. Unique role of thyroxine in T cell recognition of a pathogenic peptide in experimental autoimmune thyroiditis. Eur. J. Immunol. 1996;26:768–772. doi: 10.1002/eji.1830260407.
    1. Flynn J.C., McCormick D.J., Brusic V., Wan Q., Panos J.C., Giraldo A.A., David C.S., Kong Y.C. Pathogenic human thyroglobulin peptides in HLA-DR3 transgenic mouse model of autoimmune thyroiditis. Cell. Immunol. 2004;229:79–85. doi: 10.1016/j.cellimm.2004.07.002.
    1. Li H.S., Carayanniotis G. Iodination of tyrosyls in thyroglobulin generates neoantigenic determinants that cause thyroiditis. J. Immunol. 2006;176:4479–4483. doi: 10.4049/jimmunol.176.7.4479.
    1. Jiang H.Y., Li H.S., Carayanniotis K., Carayanniotis G. Variable influences of iodine on the T-cell recognition of a single thyroglobulin epitope. Immunology. 2007;121:370–376. doi: 10.1111/j.1365-2567.2007.02584.x.
    1. Dai Y.D., Rao V.P., Carayanniotis G. Enhanced iodination of thyroglobulin facilitates processing and presentation of a cryptic pathogenic peptide. J. Immunol. 2002;168:5907–5911. doi: 10.4049/jimmunol.168.11.5907.

Source: PubMed

3
구독하다