Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data

Mikael Kanski, Per M Arvidsson, Johannes Töger, Rasmus Borgquist, Einar Heiberg, Marcus Carlsson, Håkan Arheden, Mikael Kanski, Per M Arvidsson, Johannes Töger, Rasmus Borgquist, Einar Heiberg, Marcus Carlsson, Håkan Arheden

Abstract

Background: Measurement of intracardiac kinetic energy (KE) provides new insights into cardiac hemodynamics and may improve assessment and understanding of heart failure. We therefore aimed to investigate left ventricular (LV) KE time curves in patients with heart failure and in controls.

Methods: Patients with heart failure (n = 29, NYHA class I-IV) and controls (n = 12) underwent cardiovascular magnetic resonance (CMR) including 4D flow. The vortex-ring boundary was computed using Lagrangian coherent structures. The LV endocardium and vortex-ring were manually delineated and KE was calculated as ½mv(2) of the blood within the whole LV and the vortex ring, respectively.

Results: The systolic average KE was higher in patients compared to controls (2.2 ± 1.4 mJ vs 1.6 ± 0.6 mJ, p = 0.048), but lower when indexing to EDV (6.3 ± 2.2 μJ/ml vs 8.0 ± 2.1 μJ/ml, p = 0.025). No difference was seen in diastolic average KE (3.2 ± 2.3 mJ vs 2.0 ± 0.8 mJ, p = 0.13) even when indexing to EDV (9.0 ± 4.4 μJ/ml vs 10.2 ± 3.3 μJ/ml, p = 0.41). In patients, a smaller fraction of diastolic average KE was observed inside the vortex ring compared to controls (72 ± 6% vs 54 ± 9%, p < 0.0001). Three distinctive KE time curves were seen in patients which were markedly different from findings in controls, and with a moderate agreement between KE time curve patterns and degree of diastolic dysfunction (Cohen's kappa = 0.49), but unrelated to NYHA classification (p = 0.12), or 6-minute walk test (p = 0.72).

Conclusion: Patients with heart failure exhibit higher systolic average KE compared to controls, suggesting altered intracardiac blood flow. The different KE time curves seen in patients may represent a conceptually new approach for heart failure classification.

Figures

Fig. 1
Fig. 1
An example of kinetic energy (KE) in a patient with heart failure at three time-points during the cardiac cycle: peak systole (top panel), peak early diastolic filling (middle panel), and during atrial systole (bottom panel). Left column shows 2-chamber view (2CH), middle column shows 3-chamber view (3CH), and right column shows 4-chamber view (4CH). LA: Left atrium; LV: Left ventricle; RA: Right atrium; RV: Right ventricle; Ao: Aorta
Fig. 2
Fig. 2
Vortex-ring delineation using Lagrangian coherent structures (LCS). Left: LCS in 3-chamber view of the LV. Right: LCS in short-axis view. Delineation of LCS for each diastolic time frame during enables quantification of blood inside and outside the diastolic vortex
Fig. 3
Fig. 3
Systolic average kinetic energy (KE, left column), and diastolic average KE (right column) in controls (open boxes) and patients with heart failure (black circles). On the Y-axis, the upper panel of graphs shows KE; middle panel shows KE indexed to stroke volume (SV); and lower panel shows KE indexed to end-diastolic volume (EDV). Error bars show mean ± SD
Fig. 4
Fig. 4
Top panel: Variation of intracardiac KE during the cardiac cycle, starting at end-diastole. KE ± SEM is shown for controls (a) and patients with three different time curve patterns (b-d). Black circles indicate KE (mJ) inside the entire left ventricle, open red boxes indicate KE (mJ) inside of diastolic vortex, and blue triangles KE (mJ) outside of the vortex. Bottom panel: Aortic flow curves, from end-diastole to end-systole, and transmitral flow curves, starting at end-systole. KE = kinetic energy; HR = heart rate; LV = left ventricle; S = systole. Error bars are omitted from KE inside and outside of the diastolic vortex as well as for flow curves for clarity
Fig. 5
Fig. 5
Temporal average kinetic energy (KE) inside the diastolic vortex (panel a) and outside the diastolic vortex (panel b) for controls and patients with heart failure subdivided by KE time curve patterns. Panel (c) shows the ratio between temporal average KE inside of the diastolic vortex and temporal average KE inside + outside of the diastolic vortex. This shows that patients with heart failure have lower fraction of KE inside of the diastolic vortex compared to controls. Comparisons are performed using Kruskal-Wallis test. Error bars show mean±SD. * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ****p < 0.0001

References

    1. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93:1137–1146. doi: 10.1136/hrt.2003.025270.
    1. Stewart S, MacIntyre K, Hole DJ, Capewell S, McMurray JJV. More “malignant” than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail. 2001;3:315–322. doi: 10.1016/S1388-9842(00)00141-0.
    1. Mcmurray JJV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Eur J Heart Fail. 2012;14(8):803–869. doi: 10.1093/eurjhf/hfs105.
    1. Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2013;14:417–424. doi: 10.1093/ehjci/jes159.
    1. Carlsson M, Töger J, Kanski M, Bloch K, Ståhlberg F, Heiberg E, et al. Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: Head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson. 2011;13:55. doi: 10.1186/1532-429X-13-55.
    1. Arvidsson PM, Töger J, Heiberg E, Carlsson M, Arheden H. Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J Appl Physiol. 2013;114:1472–81. doi: 10.1152/japplphysiol.00932.2012.
    1. Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhäll CJ. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol. 2011;300:H2135–41. doi: 10.1152/ajpheart.00993.2010.
    1. Töger J, Kanski M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, et al. Vortex ring formation in the left ventricle of the heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures. Ann Biomed Eng. 2012;40:2652–62. doi: 10.1007/s10439-012-0615-3.
    1. Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci U S A. 2006;103:6305–6308. doi: 10.1073/pnas.0600520103.
    1. Pasipoularides A. Diastolic filling vortex forces and cardiac adaptations: Probing the epigenetic nexus. Hell J Cardiol. 2012;53:458–469.
    1. Redfield MM, Jacobsen SJ, Burnett JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community. Intern Med. 2003;289:194–202.
    1. Kanski M, Töger J, Steding-Ehrenborg K, Xanthis C, Bloch KM, Heiberg E, et al. Whole-heart four-dimensional flow can be acquired with preserved quality without respiratory gating, facilitating clinical use: A head-to-head comparison. BMC Med Imaging. 2015;15:20. doi: 10.1186/s12880-015-0061-4.
    1. Töger J, Bidhult S, Revstedt J, Carlsson M, Arheden H, Heiberg E: Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-Induced fluorescence. Magn Reson Med 2015, In press.
    1. Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment--freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1. doi: 10.1186/1471-2342-10-1.
    1. Carlsson M, Heiberg E, Töger J, Arheden H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol. 2012;302:H893–900. doi: 10.1152/ajpheart.00942.2011.
    1. Trudnowski RJ, Rico RC. Specific gravity of blood and plasma at 4 and 37 °C. Clin Chem. 1974;20:615–6.
    1. Heiberg E, Engblom H, Engvall J, Hedström E, Ugander M, Arheden H. Semi-automatic quantification of myocardial infarction from delayed contrast enhanced magnetic resonance imaging. Scand Cardiovasc J. 2005;39(August 2005):267–275. doi: 10.1080/14017430500340543.
    1. Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, et al. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: A practical approach. J Cardiovasc Magn Reson. 2008;10:36. doi: 10.1186/1532-429X-10-36.
    1. Fulford AJ. The coefficient of cyclic variation: A novel statistic to measure the magnitude of cyclic variation. Emerg Themes Epidemiol. 2014;11:15. doi: 10.1186/1742-7622-11-15.
    1. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults. J Am Coll Cardiol. 2009;2009(53):e1–e90. doi: 10.1016/j.jacc.2008.11.013.
    1. Steding-Ehrenborg K, Arvidsson PM, Töger J, Rydberg M, Heiberg E, Carlsson M, Arheden H: Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls. Am J Physiol Hear Circ Physiol 2015, In press.
    1. Pedrizzetti G, La Canna G, Alfieri O, Tonti G. The vortex-an early predictor of cardiovascular outcome? Nat Rev Cardiol. 2014;11:545–553. doi: 10.1038/nrcardio.2014.75.
    1. Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson. 2010;12:9. doi: 10.1186/1532-429X-12-9.
    1. Pasipoularides A, Shu M, Ashish S, Womack MS, Glower DD. Diastolic right ventricular filling vortex in normal and volume overload states. AJP Hear Circ Physiol. 2003;284(December 2002):H1064–H1072. doi: 10.1152/ajpheart.00804.2002.
    1. Zajac J, Eriksson J, Dyverfeldt P, Bolger AF, Ebbers T, Carlhäll C-J. Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging. 2014;00:1–9.
    1. Frisard MI, Broussard A, Davies SS, Roberts LJ, Rood J, de Jonge L, et al. Aging, resting metabolic rate, and oxidative damage: Results from the Louisiana Healthy Aging Study. J Gerontol A Biol Sci Med Sci. 2007;62:752–759. doi: 10.1093/gerona/62.7.752.
    1. Carlsson M, Andersson R, Bloch K, Steding-Ehrenborg K, Mosén H, Stahlberg F, et al. Cardiac output and cardiac index measured with cardiovascular magnetic resonance in healthy subjects, elite athletes and patients with congestive heart failure. J Cardiovasc Magn Reson. 2012;14:51. doi: 10.1186/1532-429X-14-51.
    1. Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ. Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:65. doi: 10.1186/1532-429X-12-65.

Source: PubMed

3
구독하다