Serum suPAR and syndecan-4 levels predict severity of community-acquired pneumonia: a prospective, multi-centre study

Qiongzhen Luo, Pu Ning, Yali Zheng, Ying Shang, Bing Zhou, Zhancheng Gao, Qiongzhen Luo, Pu Ning, Yali Zheng, Ying Shang, Bing Zhou, Zhancheng Gao

Abstract

Background: Community-acquired pneumonia (CAP) is a major cause of death worldwide and occurs with variable severity. There are few studies focused on the expression of soluble urokinase-type plasminogen activator receptor (suPAR) and syndecan-4 in patients with CAP.

Methods: A prospective, multi-centre study was conducted between January 2014 and December 2016. A total of 103 patients with severe CAP (SCAP), 149 patients with non-SCAP, and 30 healthy individuals were enrolled. Clinical data were recorded for all enrolled patients. Serum suPAR and syndecan-4 levels were determined by quantitative enzyme-linked immunosorbent assay. The t test and Mann-Whitney U test were used to compare between two groups; one-way analysis of variance and the Kruskal-Wallis test were used to compare multiple groups. Correlations were assessed using Pearson and Spearman tests. Area under the curve (AUCs), optimal threshold values, sensitivity, and specificity were calculated. Survival curves were constructed and compared by log-rank test. Regression analyses assessed the effect of multiple variables on 30-day survival.

Results: suPAR levels increased in all patients with CAP, especially in severe cases. Syndecan-4 levels decreased in patients with CAP, especially in non-survivors. suPAR and syndecan-4 levels were positively and negatively correlated with severity scores, respectively. suPAR exhibited high accuracy in predicting SCAP among patients with CAP with an AUC of 0.835 (p < 0.001). In contrast, syndecan-4 exhibited poor diagnostic value for predicting SCAP (AUC 0.550, p = 0.187). The AUC for predicting mortality in patients with SCAP was 0.772 and 0.744 for suPAR and syndecan-4, respectively; the respective prediction threshold values were 10.22 ng/mL and 6.68 ng/mL. Addition of both suPAR and syndecan-4 to the Pneumonia Severity Index significantly improved their prognostic accuracy, with an AUC of 0.885. Regression analysis showed that suPAR ≥10.22 ng/mL and syndecan-4 ≤ 6.68 ng/mL were reliable independent markers for prediction of 30-day survival.

Conclusion: suPAR exhibits high accuracy for both diagnosis and prognosis of SCAP. Syndecan-4 can reliably predict mortality in patients with SCAP. Addition of both suPAR and syndecan-4 to a clinical scoring method could improve prognostic accuracy.

Trial registration: ClinicalTrials.gov, NCT03093220 . Registered on 28 March 2017 (retrospectively registered).

Keywords: Community acquired pneumonia; Mortality; Severity; Syndecan-4; suPAR.

Conflict of interest statement

Ethics approval and consent to participate

All subjects provided informed consent. This study was approved by the medical ethics committee of Peking University People's Hospital.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of the study population. SCAP severe community-acquired pneumonia
Fig. 2
Fig. 2
Levels of soluble urokinase-type plasminogen activator receptor (suPAR) and syndecan-4 across multiple groups. a, b Levels of suPAR and syndecan-4 in patients with severe community-acquired pneumonia SCAP, patients with non-SCAP, and healthy individuals, respectively. For suPAR, SCAP versus non-SCAP, p < 0.001; non-SCAP versus healthy individuals, p < 0.001. For syndecan-4, SCAP versus healthy individuals, p < 0.001; non-SCAP versus healthy individuals, p < 0.001. c, d Levels of suPAR and syndecan-4 in survivors and non-survivors among patients with SCAP, patients with SCAP who met at least one major criterion (major criteria), and patients with SCAP who met only minor criterion (minor criteria). For suPAR, survivors versus non-survivors, p < 0.001; major criteria versus minor criteria, p = 0.459. For Syndecan-4, survivors versus non-survivors, p = 0.002; major criteria versus minor criteria, p = 0.671. e, f Comparison of suPAR and syndecan-4 in patients with SCAP and non-SCAP for various causative pathogens; p > 0.05 for all comparisons
Fig. 3
Fig. 3
Correlation of soluble urokinase-type plasminogen activator receptor (suPAR) and syndecan-4 levels with multiple scoring systems across 252 patients with community-acquired pneumonia (CAP). r is the correlation coefficient. a, c, e Levels of suPAR were significantly positively correlated with the confusion, urea, respiratory rate, blood pressure, and age ≥65 years old (CURB-65) score (r = 0.399, p < 0.001), Pneumonia Severity Index (PSI) (r = 0.433, p < 0.001), and Acute Physiology and Chronic Health Evaluation II (APACHE II) score (r = 0.496, p < 0.001), respectively. b, d, f Levels of syndecan-4 were significantly negatively correlated with CURB-65 score (r = -0.220, p = 0.001), PSI (r = -0.279, p < 0.001), and APACHE II score (r = -0.184, p = 0.003), respectively
Fig. 4
Fig. 4
Receiver operating characteristic curve analysis of various parameters to discriminate patients with severe community-acquired pneumonia from patients with community-acquired pneumonia. suPAR soluble urokinase-type plasminogen activator receptor, NLR neutrophil/lymphocyte ratio, WBC whole blood leukocyte count, CRP C-reactive protein, PCT procalcitonin, CURB-65 confusion, urea, respiratory rate, blood pressure, and age ≥65 years old score, PSI Pneumonia Severity Index Score, APACHE II Acute Physiology and Chronic Health Evaluation II score, AUC area under the curve
Fig. 5
Fig. 5
Receiver operating characteristic (ROC) curve analysis of various parameters to predict 30-day mortality in patients with SCAP
Fig. 6
Fig. 6
Kaplan–Meier analysis of 30-day mortality in patients with severe community-acquired pneumonia. Analysis was stratified by soluble urokinase-type plasminogen activator receptor (suPAR) (a) and syndecan-4 (b) levels

References

    1. Prina E, Ranzani OT, Torres A. Community-acquired pneumonia. Lancet. 2015;386:1097–1108. doi: 10.1016/S0140-6736(15)60733-4.
    1. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med. 2014;371:1619–1628. doi: 10.1056/NEJMra1312885.
    1. Chalmers JD. Identifying severe community-acquired pneumonia: moving beyond mortality. Thorax. 2015;70:515–516. doi: 10.1136/thoraxjnl-2015-207090.
    1. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, Kapoor WN. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med. 1997;336:243–250. doi: 10.1056/NEJM199701233360402.
    1. Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350:451–458. doi: 10.1056/NEJMoa031544.
    1. Bello S, Lasierra AB, Mincholé E, Fandos S, Ruiz MA, Vera E, de Pablo F, Ferrer M, Menendez R, Torres A. Prognostic power of proadrenomedullin in community-acquired pneumonia is independent of aetiology. Eur Respir J. 2012;39:1144–1155. doi: 10.1183/09031936.00080411.
    1. Krüger S, Ewig S, Giersdorf S, Hartmann O, Suttorp N, Welte T; German Competence Network for the Study of Community Acquired Pneumonia (CAPNETZ) Study Group. Cardiovascular and inflammatory biomarkers to predict short- and long-term survival in community-acquired pneumonia: Results from the German Competence Network, CAPNETZ. Am J Respir Crit Care Med. 2010;182:1426-34.
    1. Manetti M, Rosa I, Milia AF, Guiducci S, Carmeliet P, Ibba-Manneschi L, Matucci-Cerinic M. Inactivation of urokinase-type plasminogen activator receptor (uPAR) gene induces dermal and pulmonary fibrosis and peripheral microvasculopathy in mice: a new model of experimental scleroderma? Ann Rheum Dis. 2014;73:1700–1709. doi: 10.1136/annrheumdis-2013-203706.
    1. Kobayashi N, Ueno T, Ohashi K, Yamashita H, Takahashi Y, Sakamoto K, Manabe S, Hara S, Takashima Y, Dan T, Pastan I, Miyata T, Kurihara H, Matsusaka T, Reiser J, Nagata M. Podocyte injury-driven intracapillary plasminogen activator inhibitor type 1 accelerates podocyte loss via uPAR-mediated β1-integrin endocytosis. Am J Physiol Renal Physiol. 2015;308:F614–F626. doi: 10.1152/ajprenal.00616.2014.
    1. Genua M, D'Alessio S, Cibella J, Gandelli A, Sala E, Correale C, Spinelli A, Arena V, Malesci A, Rutella S, Ploplis VA, Vetrano S, Danese S. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015;64:589–600. doi: 10.1136/gutjnl-2013-305933.
    1. Mazzieri R, Pietrogrande G, Gerasi L, Gandelli A, Colombo P, Moi D, Brombin C, Ambrosi A, Danese S, Mignatti P, Blasi F, D'Alessio S. Urokinase receptor promotes skin tumor formation by preventing epithelial cell activation of Notch1. Cancer Res. 2015;75:4895–4909. doi: 10.1158/0008-5472.CAN-15-0378.
    1. Matzkies LM, Raggam RB, Flick H, Rabensteiner J, Feierl G, Hoenigl M, Prattes J. Prognostic and diagnostic potential of suPAR levels in pleural effusion. J Infect. 2017;75:465–467. doi: 10.1016/j.jinf.2017.07.002.
    1. Donadello K, Covajes C, Covajes C, Vincent JL. suPAR as a prognostic biomarker in sepsis. BMC Med. 2012;10:2. doi: 10.1186/1741-7015-10-2.
    1. Choi S, Chung H, Hong H, Kim SY, Kim SE, Seoh JY, Moon CM, Yang EG, Oh ES. Inflammatory hypoxia induces syndecan-2 expression through IL-1β-mediated FOXO3a activation in colonic epithelia. FASEB J. 2017;31:1516–1530. doi: 10.1096/fj.201601098R.
    1. Brauer R, Ge L, Schlesinger SY, Birkland TP, Huang Y, Parimon T, Lee V, McKinney BL, McGuire JK, Parks WC, Chen P. Syndecan-1 attenuates lung injury during influenza infection by potentiating c-met signaling to suppress epithelial apoptosis. Am J Respir Crit Care Med. 2016;194:333–344. doi: 10.1164/rccm.201509-1878OC.
    1. Cassinelli G, Zaffaroni N, Lanzi C. The heparanase/heparan sulfate proteoglycan axis: a potential new therapeutic target in sarcomas. Cancer Lett. 2016;382:245–254. doi: 10.1016/j.canlet.2016.09.004.
    1. Santoso A, Kikuchi T, Tode N, Hirano T, Komatsu R, Damayanti T, Motohashi H, Yamamoto M, Kojima T, Uede T, Nukiwa T, Ichinose M. Syndecan 4 mediates Nrf2-dependent expansion of bronchiolar progenitors that protect against lung inflammation. Mol Ther. 2016;24:41–52. doi: 10.1038/mt.2015.153.
    1. Niederman MS, Mandell LA, Anzueto A, Bass JB, Broughton WA, Campbell GD, Dean N, File T, Fine MJ, Gross PA, Martinez F, Marrie TJ, Plouffe JF, Ramirez J, Sarosi GA, Torres A, Wilson R, Yu VL; American Thoracic Society. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med. 2001;163:1730–54.
    1. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, Torres A, Whitney CG; Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2:S27–72.
    1. Capelastegui A, España PP, Quintana JM, Areitio I, Gorordo I, Egurrola M, Bilbao A. Validation of a predictive rule for the management of community-acquired pneumonia. Eur Respir J. 2006;27:151–157. doi: 10.1183/09031936.06.00062505.
    1. Spindler C, Ortqvist A. Prognostic score systems and community-acquired bacteraemic pneumococcal pneumonia. Eur Respir J. 2006;28:816–823. doi: 10.1183/09031936.06.00144605.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Giamarellos-Bourboulis EJ, Norrby-Teglund A, Mylona V, Savva A, Tsangaris I, Dimopoulou I, Mouktaroudi M, Raftogiannis M, Georgitsi M, Linnér A, Adamis G, Antonopoulou A, Apostolidou E, Chrisofos M, Katsenos C, Koutelidakis I, Kotzampassi K, Koratzanis G, Koupetori M, Kritselis I, Lymberopoulou K, Mandragos K, Marioli A, Sundén-Cullberg J, Mega A, Prekates A, Routsi C, Gogos C, Treutiger CJ, Armaganidis A, Dimopoulos G. Risk assessment in sepsis: a new prognostication rule by APACHE II score and serum soluble urokinase plasminogen activator receptor. Crit Care. 2012;16(4):R149.
    1. Rudolf F, Wagner AJ, Back FM, Gomes VF, Aaby P, Østergaard L, Eugen-Olsen J, Wejse C. Tuberculosis case finding and mortality prediction: added value of the clinical TBscore and biomarker suPAR. Int J Tuberc Lung Dis. 2017;21:67–72. doi: 10.5588/ijtld.16.0404.
    1. Rasmussen LJ, Knudsen A, Katzenstein TL, Gerstoft J, Obel N, Jørgensen NR, Kronborg G, Benfield T, Kjaer A, Eugen-Olsen J, Lebech AM. Soluble urokinase plasminogen activator receptor (suPAR) is a novel, independent predictive marker of myocardial infarction in HIV-1-infected patients: a nested case-control study. HIV Med. 2016;17:350–357. doi: 10.1111/hiv.12315.
    1. Savva A, Raftogiannis M, Baziaka F, Routsi C, Antonopoulou A, Koutoukas P, Tsaganos T, Kotanidou A, Apostolidou E, Giamarellos-Bourboulis EJ, Dimopoulos G. Soluble urokinase plasminogen activator receptor (suPAR) for assessment of disease severity in ventilator-associated pneumonia and sepsis. J Infect. 2011;63:344–350. doi: 10.1016/j.jinf.2011.07.016.
    1. Wittenhagen P, Kronborg G, Weis N, Nielsen H, Obel N, Pedersen SS, Eugen-Olsen J. The plasma level of soluble urokinase receptor is elevated in patients with Streptococcus pneumoniae bacteraemia and predicts mortality. Clin Microbiol Infect. 2004;10:409–415. doi: 10.1111/j.1469-0691.2004.00850.x.
    1. Kofoed K, Andersen O, Kronborg G, Tvede M, Petersen J, Eugen-Olsen J, Larsen K. Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care. 2007;11:R38. doi: 10.1186/cc5723.
    1. Nikaido T, Tanino Y, Wang X, Sato S, Misa K, Fukuhara N, Sato Y, Fukuhara A, Uematsu M, Suzuki Y, Kojima T, Tanino M, Endo Y, Tsuchiya K, Kawamura I, Frevert CW, Munakata M. Serum syndecan-4 as a possible biomarker in patients with acute pneumonia. J Infect Dis. 2015;212:1500–1508. doi: 10.1093/infdis/jiv234.
    1. Derman BA, Macklis JN, Azeem MS, Sayidine S, Basu S, Batus M, Esmail F, Borgia JA, Bonomi P, Fidler MJ. Relationships between longitudinal neutrophil to lymphocyte ratios, body weight changes, and overall survival in patients with non-small cell lung cancer. BMC Cancer. 2017;17:141. doi: 10.1186/s12885-017-3122-y.
    1. Curbelo J, Luquero Bueno S, Galván-Román JM, Ortega-Gómez M, Rajas O, Fernández-Jiménez G, Vega-Piris L, Rodríguez-Salvanes F, Arnalich B, Díaz A, Costa R, de la Fuente H, Lancho Á, Suárez C, Ancochea J, Aspa J. Inflammation biomarkers in blood as mortality predictors in community-acquired pneumonia admitted patients: Importance of comparison with neutrophil count percentage or neutrophil-lymphocyte ratio. PLoS One. 2017;12:e0173947. doi: 10.1371/journal.pone.0173947.
    1. Benites-Zapata VA, Hernandez AV, Nagarajan V, Cauthen CA, Starling RC, Tang WH. Usefulness of neutrophil-to-lymphocyte ratio in risk stratification of patients with advanced heart failure. Am J Cardiol. 2015;115:57–61. doi: 10.1016/j.amjcard.2014.10.008.
    1. Koch A, Voigt S, Kruschinski C, Sanson E, Dückers H, Horn A, Yagmur E, Zimmermann H, Trautwein C, Tacke F. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care. 2011;15:R63. doi: 10.1186/cc10037.
    1. Hoenigl M, Raggam RB, Wagner J, Valentin T, Leitner E, Seeber K, Zollner-Schwetz I, Krammer W, Prüller F, Grisold AJ, Krause R. Diagnostic accuracy of soluble urokinase plasminogen activator receptor (suPAR) for prediction of bacteremia in patients with systemic inflammatory response syndrome. Clin Biochem. 2013;46:225–229. doi: 10.1016/j.clinbiochem.2012.11.004.
    1. Suberviola B, Castellanos-Ortega A, Ruiz Ruiz A, Lopez-Hoyos M, Santibañez M. Hospital mortality prognostication in sepsis using the new biomarkers suPAR and proADM in a single determination on ICU admission. Intensive Care Med. 2013;39:1945–1952. doi: 10.1007/s00134-013-3056-z.
    1. Mölkänen T, Ruotsalainen E, Thorball CW, Järvinen A. Elevated soluble urokinase plasminogen activator receptor (suPAR) predicts mortality in Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2011;30:1417–1424. doi: 10.1007/s10096-011-1236-8.
    1. Huttunen R, Syrjänen J, Vuento R, Hurme M, Huhtala H, Laine J, Pessi T, Aittoniemi J. Plasma level of soluble urokinase-type plasminogen activator receptor as a predictor of disease severity and case fatality in patients with bacteraemia: a prospective cohort study. J Intern Med. 2011;270:32–40. doi: 10.1111/j.1365-2796.2011.02363.x.
    1. Jalkanen V, Yang R, Linko R, Huhtala H, Okkonen M, Varpula T, Pettilä V, Tenhunen J, FINNALI Study Group SuPAR and PAI-1 in critically ill, mechanically ventilated patients. Intensive Care Med. 2013;39:489–496. doi: 10.1007/s00134-012-2730-x.
    1. Murciano JC, Higazi AA, Cines DB, Muzykantov VR. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J Control Release. 2009;139:190–196. doi: 10.1016/j.jconrel.2009.07.003.
    1. Tanino Y, Chang MY, Wang X, Gill SE, Skerrett S, McGuire JK, Sato S, Nikaido T, Kojima T, Munakata M, Mongovin S, Parks WC, Martin TR, Wight TN, Frevert CW. Syndecan-4 regulates early neutrophil migration and pulmonary inflammation in response to lipopolysaccharide. Am J Respir Cell Mol Biol. 2012;47:196–202. doi: 10.1165/rcmb.2011-0294OC.
    1. Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Iwase M, Yoshikai Y, Yanada M, Yamamoto K, Matsushita T, Nishimura M, Kusugami K, Saito H, Muramatsu T. Syndecan-4 deficiency leads to high mortality of lipopolysaccharide-injected mice. J Biol Chem. 2001;276:47483–47488. doi: 10.1074/jbc.M106268200.
    1. Theilade S, Lyngbaek S, Hansen TW, Eugen-Olsen J, Fenger M, Rossing P, Jeppesen JL. Soluble urokinase plasminogen activator receptor levels are elevated and associated with complications in patients with type 1 diabetes. J Intern Med. 2015;277:362–371. doi: 10.1111/joim.12269.
    1. Kirkegaard-Klitbo DM, Langkilde A, Mejer N, Andersen O, Eugen-Olsen J, Benfield T. Soluble urokinase plasminogen activator receptor is a predictor of incident non-AIDS comorbidity and all-cause mortality in human immunodeficiency virus type 1 infection. J Infect Dis. 2017;216:819–823. doi: 10.1093/infdis/jix266.
    1. Koller L, Stojkovic S, Richter B, Sulzgruber P, Potolidis C, Liebhart F, Mörtl D, Berger R, Goliasch G, Wojta J, Hülsmann M, Niessner A. Soluble urokinase-type plasminogen activator receptor improves risk prediction in patients with chronic heart failure. JACC Heart Fail. 2017;5:268–277. doi: 10.1016/j.jchf.2016.12.008.

Source: PubMed

3
구독하다