Promoting the use of personally relevant stimuli for investigating patients with disorders of consciousness

Fabien Perrin, Maïté Castro, Barbara Tillmann, Jacques Luauté, Fabien Perrin, Maïté Castro, Barbara Tillmann, Jacques Luauté

Abstract

Sensory stimuli are used to evaluate and to restore cognitive functions and consciousness in patients with a disorder of consciousness (DOC) following a severe brain injury. Although sophisticated protocols can help assessing higher order cognitive functions and awareness, one major drawback is their lack of sensitivity. The aim of the present review is to show that stimulus selection is crucial for an accurate evaluation of the state of patients with disorders of consciousness as it determines the levels of processing that the patient can have with stimulation from his/her environment. The probability to observe a behavioral response or a cerebral response is increased when her/his personal history and/or her/his personal preferences are taken into account. We show that personally relevant stimuli (i.e., with emotional, autobiographical, or self-related characteristics) are associated with clearer signs of perception than are irrelevant stimuli in patients with DOC. Among personally relevant stimuli, music appears to be a promising clinical tool as it boosts perception and cognition in patients with DOC and could also serve as a prognostic tool. We suggest that the effect of music on cerebral processes in patients might reflect the music's capacity to act both on the external and internal neural networks supporting consciousness.

Keywords: autobiographical memory; coma; disorders of consciousness; internal and external networks; minimally conscious state; music; self-processing; vegetative state.

References

    1. Aldridge D., Gustorff D., Hannich H. J. (1990). Where am I? Music therapy applied to coma patients. J. R. Soc. Med. 83 345–346.
    1. Bekinschtein T. A., Dehaene S., Rohaut B., Tadel F., Cohen L., Naccache L. (2009). Neural signature of the conscious processing of auditory regularities. Proc. Natl. Acad. Sci. U.S.A. 106 1672–1677. 10.1073/pnas.0809667106
    1. Bekinschtein T., Leiguarda R., Armony J., Owen A., Carpintiero S., Niklison J., et al. (2004). Emotion processing in the minimally conscious state. J. Neurol. Neurosurg. Psychiatry 75 788 10.1136/jnnp.2003.034876
    1. Bekinschtein T., Tiberti C., Niklison J., Tamashiro M., Ron M., Carpintiero S., et al. (2005). Assessing level of consciousness and cognitive changes from vegetative state to full recovery. Neuropsychol. Rehabil. 15 307–322. 10.1080/09602010443000443
    1. Bigand E., Tillmann B., Peretz I., Zatorre R. J., Lopez L., Majno M. (2015). “THE NEUROSCIENCES AND MUSIC V - Cognitive Stimulation and Rehabilitation,” in Proceedings of the International Meeting held on May 29-June 1, 2014, in Dijon (FRANCE), Vol. 1337 New York: Annals of the New York Academy of Sciences, 271.
    1. Blood A. J., Zatorre R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U.S.A. 98 11818–11823. 10.1073/pnas.191355898
    1. Boly M., Phillips C., Tshibanda L., Vanhaudenhuyse A., Schabus M., Dang-Vu T. T., et al. (2008). Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann. N. Y. Acad. Sci. 1129 119–129. 10.1196/annals.1417.015
    1. Bower J., Catroppa C., Grocke D., Shoemark H. (2013). Music therapy for early cognitive rehabilitation post-childhood TBI: an intrinsic mixed methods case study. Dev. Neurorehabil. 17 339–346. 10.3109/17518423.2013.778910
    1. Cabeza R., Nyberg L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12 1–47. 10.1162/08989290051137585
    1. Cabeza R., St Jacques P. (2007). Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11 219–227. 10.1016/j.tics.2007.02.005
    1. Canedo A., Grix M. C., Nicoletti J. (2002). An analysis of assessment instruments for the minimally responsive patient (MRP): clinical observations. Brain Inj. 16 453–461. 10.1080/02699050110119853
    1. Castro M., Tillmann B., Luauté J., Corneyllie A., Dailler F., André-Obadia N., et al. (2015). Boosting cognition with music in patients with disorders of consciousness. Neurorehabil. Neural Repair 10.1177/1545968314565464 [Epub ahead of print]
    1. Cavinato M., Volpato C., Silvoni S., Sacchetto M., Merico A., Piccione F. (2011). Event-related brain potential modulation in patients with severe brain damage. Clin. Neurophysiol. 122 719–724. 10.1016/j.clinph.2010.08.024
    1. Cheng L., Gosseries O., Ying L., Hu X., Yu D., Gao H., et al. (2013). Assessment of localisation to auditory stimulation in post-comatose states: use the patient’s own name. BMC Neurol. 13:27 10.1186/1471-2377-13-27
    1. Chennu S., Bekinschtein T. A. (2012). Arousal modulates auditory attention and awareness: insights from sleep, sedation, and disorders of consciousness. Front. Psychol. 3:65 10.3389/fpsyg.2012.00065
    1. Chlan L. L., Weinert C. R., Heiderscheit A., Tracy M. F., Skaar D. J., Guttormson J. L., et al. (2013). Effects of patient-directed music intervention on anxiety and sedative exposure in critically ill patients receiving mechanical ventilatory support: a randomized clinical trial. JAMA 309 2335–2344. 10.1001/jama.2013.5670
    1. Coleman M. R., Rodd J. M., Davis M. H., Johnsrude I. S., Menon D. K., Pickard J. D., et al. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130(Pt 10), 2494–2507. 10.1093/brain/awm170
    1. Conway M. A., Pleydell-Pearce C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychol. Rev. 107 261–288. 10.1037/0033-295X.107.2.261
    1. Crone J. S., Höller Y., Bergmann J., Golaszewski S., Trinka E., Kronbichler M. (2013). Self-related processing and deactivation of cortical midline regions in disorders of consciousness. Front. Hum. Neurosci. 7:504 10.3389/fnhum.2013.00504
    1. De Giorgio C. M., Rabinowicz A. L., Gott P. S. (1993). Predictive value of P300 event-related potentials compared with EEG and somatosensory evoked potentials in non-traumatic coma. Acta Neurol. Scand. 87 423–427. 10.1111/j.1600-0404.1993.tb04128.x
    1. Dehaene S., Naccache L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79 1–37. 10.1016/S0010-0277(00)00123-2
    1. Di H. B., Yu S. M., Weng X. C., Laureys S., Yu D., Li J. Q., et al. (2007). Cerebral response to patient’s own name in the vegetative and minimally conscious states. Neurology 68 895–899. 10.1212/01.wnl.0000258544.79024.d0
    1. Di Stefano C., Cortesi A., Masotti S., Simoncini L., Piperno R. (2012). Increased behavioural responsiveness with complex stimulation in VS and MCS: preliminary results. Brain Inj. 26 1250–1256. 10.3109/02699052.2012.667588
    1. Elliott L., Walker L. (2005). Rehabilitation interventions for vegetative and minimally conscious patients. Neuropsychol. Rehabil. 15 480–493. 10.1080/09602010443000506
    1. Faugeras F., Rohaut B., Weiss N., Bekinschtein T. A., Galanaud D., Puybasset L., et al. (2011). Probing consciousness with event-related potentials in vegetative state. Neurology 77 264–268. 10.1212/WNL.0b013e3182217ee8
    1. Fernández-Espejo D., Junqué C., Vendrell P., Bernabeu M., Roig T., Bargalló N., et al. (2008). Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj. 22 882–890. 10.1080/02699050802403573
    1. Fischer C., Dailler F., Morlet D. (2008). Novelty P3 elicited by the subject’s own name in comatose patients. Clin. Neurophysiol. 119 2224–2230. 10.1016/j.clinph.2008.03.035
    1. Fischer C., Luauté J., Adeleine P., Morlet D. (2004). Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology 63 669–673. 10.1212/01.WNL.0000134670.10384.E2
    1. Fischer C., Luaute J., Morlet D. (2010). Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin. Neurophysiol. 121 1032–1042. 10.1016/j.clinph.2010.02.005
    1. Formisano R., Vinicola V., Penta F., Matteis M., Brunelli S., Weckel J. W. (2001). Active music therapy in the rehabilitation of severe brain injured patients during coma recovery. Ann. Ist. Super. Sanita 37 627–630.
    1. Fuster J. M. (2009). Cortex and memory: emergence of a new paradigm. J. Cogn. Neurosci. 21 2047–2072. 10.1162/jocn.2009.21280
    1. Giacino J. T., Ashwal S., Childs N., Cranford R., Jennett B., Katz D. I., et al. (2002). The minimally conscious state: definition and diagnostic criteria. Neurology 58 349–353. 10.1212/WNL.58.3.349
    1. Glass I., Sazbon L., Groswasser Z. (1998). Mapping “cognitive” event-related potentials in prolonged postcoma unawareness state. Clin. Electroencephalogr. 29 19–30. 10.1177/155005949802900109
    1. Gomez P., Danuser B. (2007). Relationships between musical structure and psychophysiological measures of emotion. Emotion 7 377–387. 10.1037/1528-3542.7.2.377
    1. Gott P. S., Rabinowicz A. L., DeGiorgio C. M. (1991). P300 auditory event-related potentials in nontraumatic coma. Association with Glasgow Coma Score and awakening. Arch. Neurol. 48 1267–1270. 10.1001/archneur.1991.00530240071024
    1. Harris D. P., Hall J. W., III. (1990). Feasibility of auditory event-related potential measurement in brain injury rehabilitation. Ear Hear. 11 340–350. 10.1097/00003446-199010000-00004
    1. Höller Y., Kronbichler M., Bergmann J., Crone J. S., Schmid E. V., Golaszewski S., et al. (2011). Inter-individual variability of oscillatory responses to subject’s own name. A single-subject analysis. Int. J. Psychophysiol. 80 227–235. 10.1016/j.ijpsycho.2011.03.012
    1. Huang Z., Dai R., Wu X., Yang Z., Liu D., Hu J., et al. (2014). The self and its resting state in consciousness: an investigation of the vegetative state. Hum. Brain Mapp. 35 1997–2008. 10.1002/hbm.22308
    1. Janata P. (2009a). The neural architecture of music-evoked autobiographical memories. Cereb. Cortex 19 2579–2594. 10.1093/cercor/bhp008
    1. Janata P. (2009b). “Music and the self,” in Music That Works, eds Haas R., Brandes V. (Wien: Springer; ), 131–141. 10.1007/978-3-211-75121-3_8
    1. Janata P., Tomic S. T., Rakowski S. K. (2007). Characterization of music-evoked autobiographical memories. Memory 15 845–860. 10.1080/09658210701734593
    1. Jones S. J., Vaz Pato M., Sprague L., Stokes M., Munday R., Haque N. (2000). Auditory evoked potentials to spectro-temporal modulation of complex tones in normal subjects and patients with severe brain injury. Brain 123(Pt 5), 1007–1016. 10.1093/brain/123.5.1007
    1. Koelsch S. (2010). Towards a neural basis of music-evoked emotions. Trends Cogn. Sci. 14 131–137. 10.1016/j.tics.2010.01.002
    1. Kotchoubey B., Lang S., Herb E., Maurer P., Schmalohr D., Bostanov V., et al. (2003). Stimulus complexity enhances auditory discrimination in patients with extremely severe brain injuries. Neurosci. Lett. 352 129–132. 10.1016/j.neulet.2003.08.045
    1. Kotchoubey B., Lang S., Mezger G., Schmalohr D., Schneck M., Semmler A., et al. (2005). Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin. Neurophysiol. 116 2441–2453. 10.1016/j.clinph.2005.03.028
    1. Kotz S. A., Gunter T. C. (2015). Can rhythmic auditory cuing remediate language-related deficits in Parkinson’s disease? Ann. N. Y. Acad. Sci. 1337 62–68. 10.1111/nyas.12657
    1. Kotz S. A., Gunter T. C., Wonneberger S. (2005). The basal ganglia are receptive to rhythmic compensation during auditory syntactic processing: ERP patient data. Brain Lang. 95 70–71. 10.1016/j.bandl.2005.07.039
    1. Lancioni G. E., Bosco A., Belardinelli M. O., Singh N. N., O’Reilly M. F., Sigafoos J. (2010). An overview of intervention options for promoting adaptive behavior of persons with acquired brain injury and minimally conscious state. Res. Dev. Disabil. 3 1121–1134. 10.1016/j.ridd.2010.06.019
    1. Laureys S., Perrin F., Brédart S. (2007). Self-consciousness in non-communicative patients. Conscious. Cogn. 16 722–741. 10.1016/j.concog.2007.04.004
    1. Laureys S., Perrin F., Faymonville M. E., Schnakers C., Boly M., Bartsch V., et al. (2004). Cerebral processing in the minimally conscious state. Neurology 63 916–918. 10.1212/01.WNL.0000137421.30792.9B
    1. Laureys S., Schiff N. D. (2012). Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 61 478–491. 10.1016/j.neuroimage.2011.12.041
    1. Lee Y. C., Lei C. Y., Shih Y. S., Zhang W. C., Wang H. M., Tseng C. L., et al. (2011). “HRV response of vegetative state patient with music therapy,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 2011, Boston, MA: IEEE.
    1. Lombardi F., Taricco M., De Tanti A., Telaro E., Liberati A. (2002). Sensory stimulation for brain injured individuals in coma or vegetative state. Cochrane Database Syst. Rev. 2:CD001427 10.1002/14651858.cd001427
    1. Magee W. L. (2005). Music therapy with patients in low awareness states: approaches to assessment and treatment in multidisciplinary care. Neuropsychol. Rehabil. 15 522–536. 10.1080/09602010443000461
    1. Magee W. L. (2007). Development of a music therapy assessment tool for patients in low awareness states. NeuroRehabilitation 22 319–324.
    1. Mazzini L., Zaccala M., Gareri F., Giordano A., Angelino E. (2001). Long-latency auditory-evoked potentials in severe traumatic brain injury. Arch. Phys. Med. Rehabil. 82 57–65. 10.1053/apmr.2001.18076
    1. Monti M. M., Vanhaudenhuyse A., Coleman M. R., Boly M., Pickard J. D., Tshibanda L., et al. (2010). Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362 579–589. 10.1056/NEJMoa0905370
    1. Nantais K. M., Schellenberg E. G. (1999). The Mozart effect: an artifact of preference. Psychol. Sci. 10 370–373. 10.1111/1467-9280.00170
    1. Nicholas C. R., McLaren D. G., Gawrysiak M. J., Rogers B. P., Dougherty J. H., Nash M. R. (2014). Functional neuroimaging of personally-relevant stimuli in a paediatric case of impaired awareness. Brain Inj. 28 1135–1138. 10.3109/02699052.2014.890745
    1. Nombela C., Hughes L. E., Owen A. M., Grahn J. A. (2013). Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37 2564–2570. 10.1016/j.neubiorev.2013.08.003
    1. Northoff G., Heinzel A., de Greck M., Bermpohl F., Dobrowolny H., Panksepp J. (2006). Self-referential processing in our brain: a meta-analysis of imaging studies on the self. Neuroimage 31 440–457. 10.1016/j.neuroimage.2005.12.002
    1. O’Kelly J., James L., Palaniappan R., Taborin J., Fachner J., Magee W. L. (2013). Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious States. Front. Hum. Neurosci. 7:884 10.3389/fnhum.2013.00884
    1. Okumura Y., Asano Y., Takenaka S., Fukuyama S., Yonezawa S., Kasuya Y., et al. (2014). Brain activation by music in patients in a vegetative or minimally conscious state following diffuse brain injury. Brain Inj. 28 944–950. 10.3109/02699052.2014.888477
    1. Oleson D. S., Zubek J. P. (1970). Effect of one day of sensory deprivation on a battery of open-ended cognitive tests. Percept. Mot. Skills 31 919–923. 10.2466/pms.1970.31.3.919
    1. Owen A. M., Coleman M. R., Boly M., Davis M. H., Laureys S., Pickard J. D. (2006). Detecting awareness in the vegetative state. Science 313 1402 10.1126/science.1130197
    1. Perrin F. (2004). Auditory evoked potentials studies of information processing during human sleep. Psychol. Belg. 44 43–57.
    1. Perrin F., García-Larrea L., Mauguière F., Bastuji H. (1999). A differential brain response to the subject’s own name persists during sleep. Clin. Neurophysiol. 110 2153–2164. 10.1016/S1388-2457(99)00177-7
    1. Perrin F., Maquet P., Peigneux P., Ruby P., Degueldre C., Balteau E., et al. (2005). Neural mechanisms involved in the detection of our first name: a combined ERPs and PET study. Neuropsychologia 43 12–19. 10.1016/j.neuropsychologia.2004.07.002
    1. Perrin F., Schnakers C., Schabus M., Degueldre C., Goldman S., Brédart S., et al. (2006). Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch. Neurol. 63 562–569. 10.1001/archneur.63.4.562
    1. Piolino P., Desgranges B., Eustache F. (2009). Episodic autobiographical memories over the course of time: cognitive, neuropsychological and neuroimaging findings. Neuropsychologia 47 2314–2329. 10.1016/j.neuropsychologia.2009.01.020
    1. Przybylski L., Bedoin N., Krifi-Papoz S., Herbillon V., Roch D., Léculier L., et al. (2013). Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders. Neuropsychology 27 121–131. 10.1037/a0031277
    1. Puggina A. C. G., Paes da Silva M. J., Santos J. L. F. (2011). Use of music and voice stimulus on patients with disorders of consciousness. J. Neurosci. Nurs. 43 8–16. 10.1097/JNN.0b013e3182029778
    1. Qin P., Di H., Liu Y., Yu S., Gong Q., Duncan N., et al. (2010). Anterior cingulate activity and the self in disorders of consciousness. Hum. Brain Mapp. 31 1993–2002. 10.1002/hbm.20989
    1. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98 676–582. 10.1073/pnas.98.2.676
    1. Rämä P., Relander-Syrjänen K., Ohman J., Laakso A., Näätänen R., Kujala T. (2010). Semantic processing in comatose patients with intact temporal lobes as reflected by the N400 event-related potential. Neurosci. Lett. 474 88–92. 10.1016/j.neulet.2010.03.012
    1. Rappaport M., McCandless K. L., Pond W., Krafft M. C. (1991). Passive P300 response in traumatic brain injury patients. J. Neuropsychiatry Clin. Neurosci. 3 180–185. 10.1176/jnp.3.2.180
    1. Riganello F., Candelieri A., Quintieri M., Conforti D., Dolce G. (2010). Heart rate variability: an index of brain processing in vegetative state? An artificial intelligence, data mining study. Clin. Neurophysiol. 121 2024–2034. 10.1016/j.clinph.2010.05.010
    1. Rigaux P., Kiefer C. (2003). Indications, effectiveness and tolerance of the rehabilitation techniques aimed at improving recovery of awareness following a traumatic brain injury. Ann. Readapt. Med. Phys. 46 219–226. 10.1016/S0168-6054(03)00082-5
    1. Risetti M., Formisano R., Toppi J., Quitadamo L. R., Bianchi L., Astolfi L., et al. (2013). On ERPs detection in disorders of consciousness rehabilitation. Front. Hum. Neurosci. 7:775 10.3389/fnhum.2013.00775
    1. Salimpoor V. N., Benovoy M., Larcher K., Dagher A., Zatorre R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14 257–262. 10.1038/nn.2726
    1. Särkämö T., Pihko E., Laitinen S., Forsblom A., Soinila S., Mikkonen M., et al. (2010). Music and speech listening enhance the recovery of early processing after stroke. J. Cogn. Neurosci. 22 2716–2727. 10.1162/jocn.2009.21376
    1. Särkämö T., Tervaniemi M., Laitinen S., Forsblom A., Soinila S., Mikkonen M., et al. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 131 866–876. 10.1093/brain/awn013
    1. Schellenberg E. G. (2006). “Exposure to music: the truth about the consequences,” in The Child as Musician: A Handbook of Musical Development, ed. McPherson G. (New York, NY: Oxford University Press; ), 111–134. 10.1093/acprof:oso/9780198530329.003.0006
    1. Schiff N. D., Rodriguez-Moreno D., Kamal A., Kim K. H., Giacino J. T., Plum F., et al. (2005). fMRI reveals large-scale network activation in minimally conscious patients. Neurology 64 514–523. 10.1212/01.WNL.0000150883.10285.44
    1. Schnakers C., Giacino J., Kalmar K., Piret S., Lopez E., Boly M., et al. (2006). Does the FOUR score correctly diagnose the vegetative and minimally conscious states? Ann. Neurol. 60 744–745. 10.1002/ana.20919
    1. Schnakers C., Perrin F., Schabus M., Majerus S., Ledoux D., Damas P., et al. (2008). Voluntary brain processing in disorders of consciousness. Neurology 71 1614–1620. 10.1212/01.wnl.0000334754.15330.69
    1. Schoenle P. W., Witzke W. (2004). How vegetative is the vegetative state? Preserved semantic processing in VS patients–evidence from N 400 event-related potentials. NeuroRehabilitation 19 329–334.
    1. Sharon H., Pasternak Y., Ben Simon E., Gruberger M., Giladi N., Krimchanski B. Z., et al. (2013). Emotional processing of personally familiar faces in the vegetative state. PLoS ONE 8:e74711 10.1371/journal.pone.0074711
    1. Signorino M., D’Acunto S., Cercaci S., Pietropaoli P., Angeleri F. (1997). The P300 in traumatic coma: conditioning of the odd-ball paradigm. J. Psychophysiol. 11 59–70.
    1. Silva S., Alacoque X., Fourcade O., Samii K., Marque P., Woods R., et al. (2010). Wakefulness and loss of awareness: brain and brainstem interaction in the vegetative state. Neurology 74 313–320. 10.1212/WNL.0b013e3181cbcd96
    1. Soto D., Funes M. J., Guzmán-García A., Warbrick T., Rotshtein P., Humphreys G. W. (2009). Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc. Natl. Acad. Sci. U.S.A. 106 6011–6016. 10.1073/pnas.0811681106
    1. Staffen W., Kronbichler M., Aichhorn M., Mair A., Ladurner G. (2006). Selective brain activity in response to one’s own name in the persistent vegetative state. J. Neurol. Neurosurg. Psychiatry 77 1383–1384. 10.1136/jnnp.2006.095166
    1. Stender J., Gosseries O., Bruno M. A., Charland-Verville V., Vanhaudenhuyse A., Demertzi A., et al. (2014). Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 384 514–522. 10.1016/S0140-6736(14)60042-8
    1. Steppacher I., Eickhoff S., Jordanov T., Kaps M., Witzke W., Kissler J. (2013). N400 predicts recovery from disorders of consciousness. Ann. Neurol. 73 594–602. 10.1002/ana.23835
    1. Thaut M. H. (2010). Neurologic music therapy in cognitive rehabilitation. Music Percept. 27 281–285. 10.1525/mp.2010.27.4.281
    1. Thompson W. F., Schellenberg E. G., Husain G. (2001). Arousal, mood, and the Mozart effect. Psychol. Sci. 12 248–251. 10.1111/1467-9280.00345
    1. Tillmann B., Albouy P., Caclin A., Bigand E. (2014). Musical familiarity in congenital amusia: evidence from a gating paradigm. Cortex 59 84–94. 10.1016/j.cortex.2014.07.012
    1. Tononi G., Sporns O., Edelman G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91 5033–5037. 10.1073/pnas.91.11.5033
    1. Tulving E. (1993). “Self-knowledge of an amnesic individual is represented abstractly,” in Mental Representation of Trait and Autobiographical Knowledge About the Self, eds Srull T. K., Wyer R. S. (Hillsdale, NJ: Erlbaum; ), 147–157.
    1. Vanhaudenhuyse A., Demertzi A., Schabus M., Noirhomme Q., Bredart S., Boly M., et al. (2011). Two distinct neuronal networks mediate the awareness of environment and of self. J. Cogn. Neurosci. 23 570–578. 10.1162/jocn.2010.21488
    1. Vanhaudenhuyse A., Noirhomme Q., Tshibanda L. J., Bruno M. A., Boveroux P., Schnakers C., et al. (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133(Pt 1), 161–171. 10.1093/brain/awp313
    1. Verger J., Ruiz S., Tillmann B., Ben Romdhane M., De Quelen M., Castro M., et al. (2014). Beneficial effect of preferred music on cognitive functions in minimally conscious state patients. Rev. Neurol. 170 693–699. 10.1016/j.neurol.2014.06.005
    1. Wicker B., Ruby P., Royet J. P., Fonlupt P. (2003). A relation between rest and the self in the brain? Brain Res. Brain Res. Rev. 43 224–230. 10.1016/j.brainresrev.2003.08.003
    1. Wood R. L., Winkowski T. B., Miller J. L., Tierney L., Goldman L. (1992). Evaluating sensory regulation as a method to improve awareness in patients with altered states of consciousness: a pilot study. Brain Inj. 6 411–418. 10.3109/02699059209008137
    1. Yingling C. D., Hosobuchi Y., Harrington M. (1990). P300 as a predictor of recovery from coma. Lancet 336 873 10.1016/0140-6736(90)92372-O
    1. Zatorre R. J. (2005). Neuroscience: finding the missing fundamental. Nature 436 1093–1094. 10.1038/4361093a
    1. Zatorre R. J. (2013). Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 342 585–589. 10.1126/science.1238414

Source: PubMed

3
구독하다