Adaptive crossover designs for assessment of symptomatic treatments targeting behaviour in neurodegenerative disease: a phase 2 clinical trial of intranasal oxytocin for frontotemporal dementia (FOXY)

Elizabeth Finger, Scott Berry, Jeffrey Cummings, Kristy Coleman, Robin Hsiung, Howard H Feldman, Adam Boxer, Elizabeth Finger, Scott Berry, Jeffrey Cummings, Kristy Coleman, Robin Hsiung, Howard H Feldman, Adam Boxer

Abstract

Background: There are currently no treatments for empathy deficits in neuropsychiatric disorders. Acute administration of the hormone oxytocin has been associated with symptomatic improvements across animal models and several neuropsychiatric disorders, but results of the majority of oxytocin randomised controlled trials (RCTs) of longer duration have been negative or inconclusive. This lack of efficacy of may be due to rapid habituation to oxytocin with chronic dosing. The objective of the present study is to describe the design of a phase 2 adaptive randomised controlled crossover trial of intranasal oxytocin in frontotemporal dementia (FOXY) as an efficient model for future investigations of symptomatic treatments in neuropsychiatric and neurodegenerative disorders.

Methods: Stage 1 will identify which of three dose schedules is most promising based on change in the primary outcome measure, the Neuropsychiatric Inventory apathy/indifference domain score, over 6 weeks of treatment. In stage 2, additional patients are enrolled at the most promising dose for preliminary efficacy analysis when combined with stage 1 to determine if a phase 3 trial is warranted. Objective measures include facial expression recognition, cerebrospinal fluid (CSF) oxytocin levels, and behavioural ratings of videotaped interactions.

Results: A total of 20 patients per arm will be entered into stage 1 for a total of 60 patients. In stage 2, an additional 40 patients will be enrolled in the most promising dose arm.

Conclusions: The use of adaptive, crossover designs and inclusion of objective measures of change in CSF oxytocin levels and social behaviour will improve the efficiency and conclusiveness of RCTs of oxytocin and other symptomatic treatments in neuropsychiatric disorders.

Trial registration: ClinicalTrials.gov, NCT03260920 . Registered on August 24, 2017.

Keywords: Adaptive design; Apathy; Clinical trial; Crossover design; Empathy; Frontotemporal dementia; Oxytocin.

Conflict of interest statement

Ethics approval and consent to participate

This study has received a no objection letter from Health Canada and investigational new drug approval from the FDA. Ethics approvals will be obtained at each participating site.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Two-stage phase II adaptive crossover trial design for intranasal oxytocin for frontotemporal dementia (FOXY). In stage 1, a total of 60 patients with frontotemporal dementia (FTD) are randomized to one of three dose schedules. In the crossover design, baseline assessments are completed at the beginning of each treatment period. After baseline, participants receive twice-daily intranasal sprays of placebo or oxytocin for 6 weeks and then undergo complete outcome assessments and optional lumbar puncture. The first treatment period is followed by a washout period with no sprays given for 6 weeks. At the end of the washout period, participants are re-baselined prior to 6 weeks of twice-daily intranasal spays of the alternate drug (placebo or oxytocin). In stage 2, 20 additional patients with FTD are randomized to the most promising dose identified at the planned interim analyses at the end of stage 1, and complete procedures identical to those in stage 1 are performed

References

    1. Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron. 2010;65(6):768–779. doi: 10.1016/j.neuron.2010.03.005.
    1. Knopman DS, Boeve BS, Caselli RJ, Graff-Radford NR, Kramer JH, Mendez MF, Miller BL. Longitudinal tracking of FTLD: toward developing clinical trial methodology. Alzheimer Dis Assoc Disord. 2007;21(4):S58–S63. doi: 10.1097/WAD.0b013e31815bf69d.
    1. Guastella AJ, Gray KM, Rinehart NJ, Alvares GA, Tonge BJ, Hickie IB, Keating CM, Cacciotti-Saija C, Einfeld SL. The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry. 2015;56(4):444–452. doi: 10.1111/jcpp.12305.
    1. Miller JB, Banks SJ, Leger GC, Cummings JL. Randomized controlled trials in frontotemporal dementia: cognitive and behavioral outcomes. Transl Neurodegener. 2014;3:12. doi: 10.1186/2047-9158-3-12.
    1. Insel TR. Translating oxytocin neuroscience to the clinic: a National Institute of Mental Health perspective. Biol Psychiatry. 2016;79(3):153–154. doi: 10.1016/j.biopsych.2015.02.002.
    1. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC. Oxytocin improves “mind-reading” in humans. Biol Psychiatry. 2007;61(6):731–733. doi: 10.1016/j.biopsych.2006.07.015.
    1. Guastella AJ, Mitchell PB, Dadds MR. Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry. 2008;63(1):3–5. doi: 10.1016/j.biopsych.2007.06.026.
    1. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, Anagnostou E, Wasserman S. Oxytocin increases retention of social cognition in autism. Biol Psychiatry. 2007;61(4):498–503. doi: 10.1016/j.biopsych.2006.05.030.
    1. Einfeld SL, Smith E, McGregor IS, Steinbeck K, Taffe J, Rice LJ, Horstead SK, Rogers N, Hodge MA, Guastella AJ. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am J Med Genet A. 2014;164A(9):2232–2239. doi: 10.1002/ajmg.a.36653.
    1. Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2016;21(9):1225–1231. doi: 10.1038/mp.2015.162.
    1. Cacciotti-Saija C, Langdon R, Ward PB, Hickie IB, Scott EM, Naismith SL, Moore L, Alvares GA, Redoblado Hodge MA, Guastella AJ. A double-blind randomized controlled trial of oxytocin nasal spray and social cognition training for young people with early psychosis. Schizophr Bull. 2015;41(2):483–493. doi: 10.1093/schbul/sbu094.
    1. Gibson CM, Penn DL, Smedley KL, Leserman J, Elliott T, Pedersen CA. A pilot six-week randomized controlled trial of oxytocin on social cognition and social skills in schizophrenia. Schizophr Res. 2014;156(2–3):261–265. doi: 10.1016/j.schres.2014.04.009.
    1. Anagnostou E, Soorya L, Chaplin W, Bartz J, Halpern D, Wasserman S, Wang AT, Pepa L, Tanel N, Kushki A, et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol Autism. 2012;3(1):16. doi: 10.1186/2040-2392-3-16.
    1. Bales KL, Perkeybile AM, Conley OG, Lee MH, Guoynes CD, Downing GM, Yun CR, Solomon M, Jacob S, Mendoza SP. Chronic intranasal oxytocin causes long-term impairments in partner preference formation in male prairie voles. Biol Psychiatry. 2013;74(3):180–188. doi: 10.1016/j.biopsych.2012.08.025.
    1. Huang H, Michetti C, Busnelli M, Manago F, Sannino S, Scheggia D, Giancardo L, Sona D, Murino V, Chini B, et al. Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology. 2014;39(5):1102–1114. doi: 10.1038/npp.2013.310.
    1. Conti F, Sertic S, Reversi A, Chini B. Intracellular trafficking of the human oxytocin receptor: evidence of receptor recycling via a Rab4/Rab5 “short cycle”. Am J Physiol Endocrinol Metab. 2009;296(3):E532–E542. doi: 10.1152/ajpendo.90590.2008.
    1. Peters S, Slattery DA, Uschold-Schmidt N, Reber SO, Neumann ID. Dose-dependent effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and stress-related parameters in mice. Psychoneuroendocrinology. 2014;42:225–236. doi: 10.1016/j.psyneuen.2014.01.021.
    1. Jesso S, Morlog D, Ross S, Pell MD, Pasternak SH, Mitchell DG, Kertesz A, Finger EC. The effects of oxytocin on social cognition and behaviour in frontotemporal dementia. Brain. 2011;134(Pt 9):2493–2501. doi: 10.1093/brain/awr171.
    1. Finger EC, MacKinley J, Blair M, Oliver LD, Jesso S, Tartaglia MC, Borrie M, Wells J, Dziobek I, Pasternak S, et al. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology. 2015;84(2):174–181. doi: 10.1212/WNL.0000000000001133.
    1. Rascovsky K, Hodges JR, Kipps CM, Johnson JK, Seeley WW, Mendez MF, Knopman D, Kertesz A, Mesulam M, Salmon DP, et al. Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis Assoc Disord. 2007;21(4):S14–S18. doi: 10.1097/WAD.0b013e31815c3445.
    1. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–1014. doi: 10.1212/WNL.0b013e31821103e6.
    1. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997;48(5 Suppl 6):S10–S16. doi: 10.1212/WNL.48.5_Suppl_6.10S.
    1. Kipps CM, Davies RR, Mitchell J, Kril JJ, Halliday GM, Hodges JR. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord. 2007;23(5):334–342. doi: 10.1159/000100973.
    1. Kertesz A, Davidson W, Fox H. Frontal Behavioral Inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci. 1997;24(1):29–36. doi: 10.1017/S0317167100021053.
    1. Day GS, Farb NA, Tang-Wai DF, Masellis M, Black SE, Freedman M, Pollock BG, Chow TW. Salience network resting-state activity: prediction of frontotemporal dementia progression. JAMA Neurol. 2013;70(10):1249–1253.
    1. Striepens N, Kendrick KM, Hanking V, Landgraf R, Wullner U, Maier W, Hurlemann R. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci Rep. 2013;3:3440. doi: 10.1038/srep03440.
    1. Chang SW, Barter JW, Ebitz RB, Watson KK, Platt ML. Inhaled oxytocin amplifies both vicarious reinforcement and self reinforcement in rhesus macaques (Macaca mulatta) Proc Natl Acad Sci U S A. 2012;109(3):959–964. doi: 10.1073/pnas.1114621109.
    1. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–516. doi: 10.1038/nn0602-849.
    1. Nakajima M, Gorlich A, Heintz N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell. 2014;159(2):295–305. doi: 10.1016/j.cell.2014.09.020.
    1. Diodati D, Cyn-Ang L, Kertesz A, Finger E. Pathologic evaluation of the supraoptic and paraventricular nuclei in dementia. Can J Neurol Sci. 2012;39(2):213–219. doi: 10.1017/S0317167100013251.
    1. Boxer AL, Knopman DS, Kaufer DI, Grossman M, Onyike C, Graf-Radford N, Mendez M, Kerwin D, Lerner A, Wu CK, et al. Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2013;12(2):149–156. doi: 10.1016/S1474-4422(12)70320-4.
    1. Courtney C, Farrell D, Gray R, Hills R, Lynch L, Sellwood E, Edwards S, Hardyman W, Raftery J, Crome P, et al. Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet. 2004;363(9427):2105–2115. doi: 10.1016/S0140-6736(04)16499-4.
    1. Davis MH. A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology. 1980.
    1. Lennox RD, Wolfe RN. Revision of the Self-Monitoring Scale. J Pers Soc Psychol. 1984;46(6):1349–1364. doi: 10.1037/0022-3514.46.6.1349.
    1. Mendez MF, Fong SS, Shapira JS, Jimenez EE, Kaiser NC, Kremen SA, Tsai PH. Observation of social behavior in frontotemporal dementia. Am J Alzheimers Dis Other Demen. 2012;29(3):215–221. doi: 10.1177/1533317513517035.
    1. Levy G, Kaufmann P, Buchsbaum R, Montes J, Barsdorf A, Arbing R, Battista V, Zhou X, Mitsumoto H, Levin B, et al. A two-stage design for a phase II clinical trial of coenzyme Q10 in ALS. Neurology. 2006;66(5):660–663. doi: 10.1212/01.wnl.0000201182.60750.66.
    1. Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006;5(1):27–36. doi: 10.1038/nrd1927.
    1. Meurer WJ, Lewis RJ, Tagle D, Fetters MD, Legocki L, Berry S, Connor J, Durkalski V, Elm J, Zhao W, et al. An overview of the Adaptive Designs Accelerating Promising Trials into Treatments (ADAPT-IT) project. Ann Emerg Med. 2012;60(4):451–457. doi: 10.1016/j.annemergmed.2012.01.020.
    1. Young LJ, Barrett CE. Can oxytocin treat autism? Science. 2015;347(6224):825–826. doi: 10.1126/science.aaa8120.
    1. Leng G, Ludwig M. Intranasal oxytocin: myths and delusions. Biol Psychiatry. 2016;79(3):243–250. doi: 10.1016/j.biopsych.2015.05.003.
    1. Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, Doody RS, Lees A, Golbe LI, Williams DR, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13(7):676–685. doi: 10.1016/S1474-4422(14)70088-2.
    1. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308. doi: 10.1212/WNL.44.12.2308.
    1. Schneider LS, Olin JT, Doody RS, Clark CM, Morris JC, Reisberg B, Schmitt FA, Grundman M, Thomas RG, Ferris SH. Validity and reliability of the Alzheimer’s Disease Cooperative Study-Clinical Global Impression of Change. Alzheimer Dis Assoc Disord. 1997;11:22–32. doi: 10.1097/00002093-199700112-00004.
    1. Lanctôt KL, Chau SA, Herrmann N, Drye LT, Rosenberg PB, Scherer RW, Black SE, Vaidya V, Bachman DL, Mintzer JE. Effect of methylphenidate on attention in apathetic AD patients in a randomized, placebo-controlled trial. Int Psychogeriatr. 2014;26(02):239–246. doi: 10.1017/S1041610213001762.
    1. Lennox RD, Wolfe RN. Revision of the Self-Monitoring Scale. 1984.
    1. Bozeat S, Gregory CA, Ralph MAL, Hodges JR. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? J Neurol Neurosurg Psychiatry. 2000;69(2):178–186. doi: 10.1136/jnnp.69.2.178.
    1. Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;36(3–4):242–250. doi: 10.1159/000351671.

Source: PubMed

3
구독하다