Changes in m6A RNA methylation contribute to heart failure progression by modulating translation

Tea Berulava, Eric Buchholz, Vakhtang Elerdashvili, Tonatiuh Pena, Md Rezaul Islam, Dawid Lbik, Belal A Mohamed, Andre Renner, Dirk von Lewinski, Michael Sacherer, Katherine E Bohnsack, Markus T Bohnsack, Gaurav Jain, Vincenzo Capece, Nicole Cleve, Susanne Burkhardt, Gerd Hasenfuss, Andre Fischer, Karl Toischer, Tea Berulava, Eric Buchholz, Vakhtang Elerdashvili, Tonatiuh Pena, Md Rezaul Islam, Dawid Lbik, Belal A Mohamed, Andre Renner, Dirk von Lewinski, Michael Sacherer, Katherine E Bohnsack, Markus T Bohnsack, Gaurav Jain, Vincenzo Capece, Nicole Cleve, Susanne Burkhardt, Gerd Hasenfuss, Andre Fischer, Karl Toischer

Abstract

Aims: Deregulation of epigenetic processes and aberrant gene expression are important mechanisms in heart failure. Here we studied the potential relevance of m6A RNA methylation in heart failure development.

Methods and results: We analysed m6A RNA methylation via next-generation sequencing. We found that approximately one quarter of the transcripts in the healthy mouse and human heart exhibit m6A RNA methylation. During progression to heart failure we observed that changes in m6A RNA methylation exceed changes in gene expression both in mouse and human. RNAs with altered m6A RNA methylation were mainly linked to metabolic and regulatory pathways, while changes in RNA expression level mainly represented changes in structural plasticity. Mechanistically, we could link m6A RNA methylation to altered RNA translation and protein production. Interestingly, differentially methylated but not differentially expressed RNAs showed differential polysomal occupancy, indicating transcription-independent modulation of translation. Furthermore, mice with a cardiomyocyte restricted knockout of the RNA demethylase Fto exhibited an impaired cardiac function compared to control mice.

Conclusions: We could show that m6A landscape is altered in heart hypertrophy and heart failure. m6A RNA methylation changes lead to changes in protein abundance, unconnected to mRNA levels. This uncovers a new transcription-independent mechanisms of translation regulation. Therefore, our data suggest that modulation of epitranscriptomic processes such as m6A methylation might be an interesting target for therapeutic interventions.

Keywords: Epitranscriptomics; Heart failure; RNA methylation; Translation.

© 2019 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

References

    1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017;3:7-11.
    1. Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016;106:62-69.
    1. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuss L, Gupta SN, Schmidt K, Lehnart SE, Krüger M, Linke WA, Backs J, Regitz-Zagrosek V, Schäfer K, Field LJ, Maier LS, Hasenfuss G. Differential cardiac remodeling in preload versus afterload. Circulation 2010;122:993-1003.
    1. Chatterjee K. Pathophysiology of systolic and diastolic heart failure. Med Clin North Am 2012;96:891-899.
    1. Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM. BET bromodomains mediate transcriptional pause release in heart failure. Cell 2013;154:569-582.
    1. Steenman M, Chen Y-W, Le Cunff M, Lamirault G, Varró A, Hoffman E, Léger JJ. Transcriptomal analysis of failing and nonfailing human hearts. Physiol Genomics 2003;12:97-112.
    1. Gilsbach R, Schwaderer M, Preissl S, Grüning BA, Kranzhöfer D, Schneider P, Nührenberg TG, Mulero-Navarro S, Weichenhan D, Braun C, Dreßen M, Jacobs AR, Lahm H, Doenst T, Backofen R, Krane M, Gelb BD, Hein L. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun 2018;9:391.
    1. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 2014;15:293-306.
    1. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell 2017;169:1187-1200.
    1. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018;28:616-624.
    1. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 2017;18:2004-2014.
    1. Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 2015;29:1343-1355.
    1. Yeo GS, O'Rahilly S. Uncovering the biology of FTO. Mol Metab 2012;1:32-36.
    1. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013;49:18-29.
    1. Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 2019;139:518-532.
    1. Cui X, Meng J, Zhang S, Chen Y, Huang Y. A novel algorithm for calling mRNA m6A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics 2016;32:i378-i385.
    1. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012;485:201-206.
    1. Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang ZW, Zeng YX, Song S, Niu Y, Tong WM. Region-specific RNA m6A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 2017;7:170166.
    1. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′UTRs and near stop codons. Cell 2012;149:1635-1646.
    1. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017;27:315-328.
    1. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014;505:117-120.
    1. Bodi Z, Bottley A, Archer N, May ST, Fray RG. Yeast m6A methylated mRNAs are enriched on translating ribosomes during meiosis, and under rapamycin treatment. PLoS One 2015;10:e0132090.
    1. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′UTR m6A promotes cap-independent translation. Cell 2015;163:999-1010.
    1. Chassé H, Boulben S, Costache V, Cormier P, Morales J. Analysis of translation using polysome profiling. Nucleic Acids Res 2017;45:e15.
    1. Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, Alsallakh B, Tilgner H, Araya CL, Tang H, Ricci E, Snyder MP. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res 2015;25:1610-1621.
    1. de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. Mol Biosyst 2009;5:1512-1526.
    1. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, Li A, Wang X, Bhattarai DP, Xiao W, Sun HY, Zhu Q, Ma HL, Adhikari S, Sun M, Hao YJ, Zhang B, Huang CM, Huang N, Jiang GB, Zhao YL, Wang HL, Sun YP, Yang YG. 5-Methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res 2017;27:606-625.
    1. Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, He E, Shen B, He C. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 2017;6:e31311.
    1. Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH, Accornero F. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 2019;139:533-545.
    1. Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, Kamuf-Schenk V, Altmüller J, Tappu R, Busch M, Most P, Katus HA, Dieterich C, Völkers M. m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance 2019;2:e201800233.
    1. Slobodin B, Han R, Calderone V, Vrielink JA, Loayza-Puch F, Elkon R, Agami R. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 2017;169:326-337.e12.
    1. Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell 2016;63:306-317.
    1. Gulati P, Avezov E, Ma M, Antrobus R, Lehner P, O'Rahilly S, Yeo GS. Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm. Biosci Rep 2014;34:e00144.

Source: PubMed

3
구독하다