Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial

Nikolaj Rittig, Ermina Bach, Henrik Holm Thomsen, Steen Bønlykke Pedersen, Thomas Sava Nielsen, Jens O Jørgensen, Niels Jessen, Niels Møller, Nikolaj Rittig, Ermina Bach, Henrik Holm Thomsen, Steen Bønlykke Pedersen, Thomas Sava Nielsen, Jens O Jørgensen, Niels Jessen, Niels Møller

Abstract

Background: Lipolysis is accelerated during the acute phase of inflammation, a process being regulated by pro-inflammatory cytokines (e.g. TNF-α), stress-hormones, and insulin. The intracellular mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling pathways in adipocytes after in vivo endotoxin exposure.

Methods: Eight healthy, lean, male subjects were investigated using a randomized cross over trial with two interventions: i) bolus injection of saline (Placebo) and ii) bolus injection of lipopolysaccharide endotoxin (LPS). A 3H-palmitate tracer was used to measure palmitate rate of appearance (Rapalmitate) and indirect calorimetry was performed to measure energy expenditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during both interventions and subjected to western blotting and qPCR quantifications.

Results: LPS caused a mean increase in serum free fatty acids (FFA) concentrations of 90% (CI-95%: 37-142, p = 0.005), a median increase in Rapalmitate of 117% (CI-95%: 77-166, p<0.001), a mean increase in lipid oxidation of 49% (CI-95%: 1-96, p = 0.047), and a median increase in energy expenditure of 28% (CI-95%: 16-42, p = 0.001) compared with Placebo. These effects were associated with increased phosphorylation of hormone sensitive lipase (pHSL) at ser650 in adipose tissue (p = 0.03), a trend towards elevated pHSL at ser552 (p = 0.09) and cAMP-dependent protein kinase A (PKA) phosphorylation of perilipin 1 (PLIN1) (p = 0.09). Phosphatase and tensin homolog (PTEN) also tended to increase (p = 0.08) while phosphorylation of Akt at Thr308 tended to decrease (p = 0.09) during LPS compared with Placebo. There was no difference between protein or mRNA expression of ATGL, G0S2, and CGI-58.

Conclusion: LPS stimulated lipolysis in adipose tissue and is associated with increased pHSL and signs of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signaling. The combination of these mechanisms appear to be the driving forces behind the increased lipolysis observed in the early stages of acute inflammation and sepsis.

Trial registration: ClinicalTrials.gov NCT01705782.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT flowchart for the trial.
Fig 1. CONSORT flowchart for the trial.
Fig 2. Flowchart showing the time course…
Fig 2. Flowchart showing the time course for the trial days.
At time = 0 min a bolus of isotonic saline (Placebo) or a bolus lipopolysaccharide (LPS) was given.
Fig 3. Metabolic measures.
Fig 3. Metabolic measures.
Data are shown as dot-plots for each subject during the control conditions with saline administration (Placebo) and the day with lipopolysaccharide administration (LPS). A black horizontal bar indicates the median value for each group. A. Rapalmitate (n = 8), B. lipid oxidation rates from indirect calorimetry measurements (n = 7), and C. energy expenditure from indirect calorimtry measurements (n = 7). Paired sample t-tests were used to compare groups. Rapalmitate= rate of appearance of palmitate, FFA = free fatty acids.
Fig 4. Western blot analyses of subcutaneous…
Fig 4. Western blot analyses of subcutaneous abdominal fat tissue biopsies.
Representative western blots in abdominal adipose tissue during control conditions (Placebo) and during lipopolysaccharide (LPS) induced endotoxemia (n = 7). Data are presented as the ratio change compared to the median value for the Placebo condition. The black horizontal bars indicate the median value for each group (= 1 for Placebo in all graphs). Paired sample t-test was used to compare groups. A.G0S2 = G0/G1 switch protein 2, B.ATGL = adipose triglyceride lipase, C.CGI-58 = comparative gene identification-58, D.,E., and F.HSL = hormone sensitive lipase, andG.p-PKA Substrate = Phospho-PKA (protein kinase A) Substrate.
Fig 5. qPCR measurements of subcutaneous abdominal…
Fig 5. qPCR measurements of subcutaneous abdominal fat biopsies.
Quantitative PCR measurements (n = 6) of mRNA are shown for control conditions (Placebo) and during lipopolysaccharide (LPS): A.G0S2 = G0/G1 switch protein 2, B.ATGL = adipose triglyceride lipase, andC.CGI-58 = comparative gene identification-58.
Fig 6. Western blot analyses of subcutaneous…
Fig 6. Western blot analyses of subcutaneous abdominal fat tissue biopsies.
Representative western blots in abdominal adipose tissue during control conditions (Placebo) and during lipopolysaccharide (LPS) induced endotoxemia (n = 7). Data are presented as the ratio change compared to the median value for the Placebo condition. The black horizontal bars indicate the median value for each group (= 1 for Placebo in all graphs). Paired sample t-test was used to compare groups. A.PTEN = phosphatase and tensin homolog, B. and C.Akt, andD.AS160 = Akt substrate of 160 kDa.

References

    1. Lowry SF (2005) Human endotoxemia: a model for mechanistic insight and therapeutic targeting. Shock 24 Suppl 1: 94–100.
    1. Calvano SE, Coyle SM (2012) Experimental human endotoxemia: a model of the systemic inflammatory response syndrome? Surg Infect (Larchmt) 13: 293–299.
    1. Askanazi J, Carpentier YA, Elwyn DH, Nordenstrom J, Jeevanandam M, Rosenbaum SH, et al. (1980) Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191: 40–46.
    1. Nordenstrom J, Carpentier YA, Askanazi J, Robin AP, Elwyn DH, Hensle TW, et al. (1982) Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann Surg 196: 221–231.
    1. Cahill GF Jr. (1976) Starvation in man. Clin Endocrinol Metab 5: 397–415.
    1. Forse RA, Leibel R, Askanazi J, Hirsch J, Kinney JM (1987) Adrenergic control of adipocyte lipolysis in trauma and sepsis. Ann Surg 206: 744–751.
    1. Ilias I, Vassiliadi DA, Theodorakopoulou M, Boutati E, Maratou E, Mitrou P, et al. (2014) Adipose tissue lipolysis and circulating lipids in acute and subacute critical illness: effects of shock and treatment. J Crit Care 29: 1130 e1135–1139.
    1. Wellhoener P, Vietheer A, Sayk F, Schaaf B, Lehnert H, Dodt C (2011) Metabolic alterations in adipose tissue during the early phase of experimental endotoxemia in humans. Horm Metab Res 43: 754–759. 10.1055/s-0031-1287854
    1. Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E, Das SK, et al. (2014) Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology 59: 858–869. 10.1002/hep.26732
    1. Fruhbeck G, Mendez-Gimenez L, Fernandez-Formoso JA, Fernandez S, Rodriguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27: 63–93. 10.1017/S095442241400002X
    1. Buhl M, Bosnjak E, Vendelbo MH, Gjedsted J, Nielsen RR, T KH, et al. (2013) Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg. J Clin Endocrinol Metab 98: 2090–2099. 10.1210/jc.2012-3836
    1. Bach E, Moller AB, Jorgensen JO, Vendelbo MH, Jessen N, Olesen JF, et al. (2015) Intact pituitary function is decisive for the catabolic response to TNF-alpha: studies of protein, glucose and fatty acid metabolism in hypopituitary and healthy subjects. J Clin Endocrinol Metab 100: 578–586. 10.1210/jc.2014-2489
    1. Plomgaard P, Fischer CP, Ibfelt T, Pedersen BK, van Hall G (2008) Tumor necrosis factor-alpha modulates human in vivo lipolysis. J Clin Endocrinol Metab 93: 543–549.
    1. Moller N, Jorgensen JO, Moller J, Bak JF, Porksen N, Alberti KG, et al. (1990) Substrate metabolism during modest hyperinsulinemia in response to isolated hyperketonemia in insulin-dependent diabetic subjects. Metabolism 39: 1309–1313.
    1. Mikkelsen KH, Seifert T, Secher NH, Grondal T, van Hall G (2015) Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-beta-hydroxybutyratemia in post-absorptive healthy males. J Clin Endocrinol Metab 100: 636–643. 10.1210/jc.2014-2608
    1. Lass A, Zimmermann R, Oberer M, Zechner R (2011) Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50: 14–27. 10.1016/j.plipres.2010.10.004
    1. Nielsen TS, Jessen N, Jorgensen JO, Moller N, Lund S (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 52: R199–222. 10.1530/JME-13-0277
    1. Yang X, Lu X, Lombes M, Rha GB, Chi YI, Guerin TM, et al. (2010) The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11: 194–205. 10.1016/j.cmet.2010.02.003
    1. Rittig N, Bach E, Thomsen HH, Johannsen M, Jorgensen JO, Richelsen B, et al. (2015) Amino acid supplementation is anabolic during the acute phase of endotoxin-induced inflammation: A human randomized crossover trial. Clin Nutr.
    1. Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82: 420–430.
    1. Jensen MD, Heiling V, Miles JM (1990) Measurement of non-steady-state free fatty acid turnover. Am J Physiol 258: E103–108.
    1. Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review. Metabolism 37: 287–301.
    1. Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, et al. (2006) Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem 281: 15837–15844.
    1. Gurtler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, et al. (2013) Stain-Free technology as a normalization tool in Western blot analysis. Anal Biochem 433: 105–111. 10.1016/j.ab.2012.10.010
    1. Arvidsson S, Kwasniewski M, Riano-Pachon DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9: 465 10.1186/1471-2105-9-465
    1. Anthonsen MW, Ronnstrand L, Wernstedt C, Degerman E, Holm C (1998) Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 273: 215–221.
    1. Choi SM, Tucker DF, Gross DN, Easton RM, DiPilato LM, Dean AS, et al. (2010) Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol Cell Biol 30: 5009–5020. 10.1128/MCB.00797-10
    1. Bloesch D, Keller U, Spinas GA, Kury D, Girard J, Stauffacher W (1993) Effects of endotoxin on leucine and glucose kinetics in man: contribution of prostaglandin E2 assessed by a cyclooxygenase inhibitor. J Clin Endocrinol Metab 77: 1156–1163.
    1. Fong YM, Marano MA, Moldawer LL, Wei H, Calvano SE, Kenney JS, et al. (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85: 1896–1904.
    1. Nielsen TS, Vendelbo MH, Jessen N, Pedersen SB, Jorgensen JO, Lund S, et al. (2011) Fasting, but not exercise, increases adipose triglyceride lipase (ATGL) protein and reduces G(0)/G(1) switch gene 2 (G0S2) protein and mRNA content in human adipose tissue. J Clin Endocrinol Metab 96: E1293–1297. 10.1210/jc.2011-0149
    1. Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Moller K (2008) Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15: 1697–1705.
    1. Sugawara K, Miyata G, Shineha R, Satomi S (2003) The lipolytic responsiveness to endotoxin in subcutaneous adipose tissue is greater than mesenteric adipose tissue. Tohoku J Exp Med 199: 171–179.
    1. Lonnqvist F, Krief S, Strosberg AD, Nyberg S, Emorine LJ, Arner P (1993) Evidence for a functional beta 3-adrenoceptor in man. Br J Pharmacol 110: 929–936.
    1. Richelsen B, Pedersen SB, Moller-Pedersen T, Bak JF (1991) Regional differences in triglyceride breakdown in human adipose tissue: effects of catecholamines, insulin, and prostaglandin E2. Metabolism 40: 990–996.

Source: PubMed

3
구독하다