Age, Weight, and CYP2D6 Genotype Are Major Determinants of Primaquine Pharmacokinetics in African Children

Bronner P Gonçalves, Helmi Pett, Alfred B Tiono, Daryl Murry, Sodiomon B Sirima, Mikko Niemi, Teun Bousema, Chris Drakeley, Rob Ter Heine, Bronner P Gonçalves, Helmi Pett, Alfred B Tiono, Daryl Murry, Sodiomon B Sirima, Mikko Niemi, Teun Bousema, Chris Drakeley, Rob Ter Heine

Abstract

Low-dose primaquine is recommended to prevent Plasmodium falciparum malaria transmission in areas threatened by artemisinin resistance and areas aiming for malaria elimination. Community treatment campaigns with artemisinin-based combination therapy in combination with the gametocytocidal primaquine dose target all age groups, but no studies thus far have assessed the pharmacokinetics of this gametocytocidal drug in African children. We recruited 40 children participating in a primaquine efficacy trial in Burkina Faso to study primaquine pharmacokinetics. These children received artemether-lumefantrine and either a 0.25- or a 0.40-mg/kg primaquine dose. Seven blood samples were collected from each participant for primaquine and carboxy-primaquine plasma levels determinations: one sample was collected before primaquine administration and six after primaquine administration according to partially overlapping sampling schedules. Physiological population pharmacokinetic modeling was used to assess the impact of weight, age, and CYP2D6 genotype on primaquine and carboxy-primaquine pharmacokinetics. Despite linear weight normalized dosing, the areas under the plasma concentration-time curves and the peak concentrations for both primaquine and carboxy-primaquine increased with age and body weight. Children who were CYP2D6 poor metabolizers had higher levels of the parent compound, indicating a lower primaquine CYP2D6-mediated metabolism. Our data indicate that primaquine and carboxy-primaquine pharmacokinetics are influenced by age, weight, and CYP2D6 genotype and suggest that dosing strategies may have to be reconsidered to maximize the transmission-blocking properties of primaquine. (This study has been registered at ClinicalTrials.gov under registration no. NCT01935882.).

Keywords: CYP2D6; Plasmodium falciparum; pharmacokinetics; primaquine.

Copyright © 2017 Gonçalves et al.

Figures

FIG 1
FIG 1
PQ and C-PQ plasma levels (y axes) after PQ administration (x axes). In panels A and C, PQ levels are presented for participants who received the 0.25- and 0.40-mg/kg PQ doses, respectively. In panels B and D, the C-PQ levels are presented for the 0.25- and 0.40-mg/kg PQ study arms, respectively. Assay results for all samples collected after PQ administration, including those with PQ or C-PQ levels below the limit of detection (i.e., with assigned level of 0 ng/ml), are presented.
FIG 2
FIG 2
Schematic representation of the model. The mass transport of this model can be described with the following rate constants: k12 = 3/MAT, k23 = 3/MAT, k34 = 3/MAT, k40 = CLH,CYP2D6/VL, k45 = CLH,MAO/VL, k50 = CLCPQ/VCPQ, k46 = [QH (1 − EH)]/VL, and k64 = QH/VPQ.
FIG 3
FIG 3
Prediction-corrected visual predictive check of observed data. The left and right panels depict the prediction-corrected visual predictive checks for PQ and C-PQ, respectively, based on 1,000 simulations. Prediction-corrected simulated (shaded areas) and observed (circles and lines) PQ and C-PQ concentrations are presented over time (h; y axes). The thick red line connects the observed median values per bin. The dotted red lines connect the 5th and 95th percentiles of the observations. The light blue areas are the 95% confidence interval of the 5th and 95th percentiles, and the light red area indicates the confidence interval of the median.
FIG 4
FIG 4
Area under the plasma concentration-time curves for PQ (left panel) and C-PQ (right panel) by weight (x axes).
FIG 5
FIG 5
Effect of age and CYP2D6 activity score (AS) on PQ and C-PQ plasma concentrations over time after a 0.25-mg/kg single dose of PQ. Panels A and B, respectively, show the effects of age on PQ and C-PQ concentrations over time in two hypothetical children of different ages (2-year-old, 12-kg body weight; 14-year-old, 40-kg body weight), with a CYP2D6 AS = 1.0. Panels C and D, respectively, show the effects of genetically determined CYP2D6 AS in four hypothetical 14-year-old children on the PQ and C-PQ concentration over time. The values used to construct curves are model derived.

References

    1. World Health Organization. 2012. Single dose primaquine as a gametocytocide in Plasmodium falciparum malaria. World Health Organization, Geneva, Switzerland.
    1. Vale N, Moreira R, Gomes P. 2009. Primaquine revisited six decades after its discovery. Eur J Med Chem 44:937–953. doi:10.1016/j.ejmech.2008.08.011.
    1. Eziefula AC, Bousema T, Yeung S, Kamya M, Owaraganise A, Gabagaya G, Bradley J, Grignard L, Lanke KH, Wanzira H, Mpimbaza A, Nsobya S, White NJ, Webb EL, Staedke SG, Drakeley C. 2014. Single dose primaquine for clearance of Plasmodium falciparum gametocytes in children with uncomplicated malaria in Uganda: a randomised, controlled, double-blind, dose-ranging trial. Lancet Infect Dis 14:130–139. doi:10.1016/S1473-3099(13)70268-8.
    1. Goncalves BP, Tiono AB, Ouedraogo A, Guelbeogo WM, Bradley J, Nebie I, Siaka D, Lanke K, Eziefula AC, Diarra A, Pett H, Bougouma EC, Sirima SB, Drakeley C, Bousema T. 2016. Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: a randomised, double-blind, placebo-controlled trial. BMC Med 14:40. doi:10.1186/s12916-016-0581-y.
    1. Dicko A, Brown JM, Diawara H, Baber I, Mahamar A, Soumare HM, Sanogo K, Koita F, Keita S, Traore SF, Chen I, Poirot E, Hwang J, McCulloch C, Lanke K, Pett H, Niemi M, Nosten F, Bousema T, Gosling R. 2016. Primaquine to reduce transmission of Plasmodium falciparum malaria in Mali: a single-blind, dose-ranging, adaptive randomised phase 2 trial. Lancet Infect Dis 16:674–684. doi:10.1016/S1473-3099(15)00479-X.
    1. Okebe J, Bousema T, Affara M, DiTanna G, Eziefula AC, Jawara M, Nwakanma D, Amambua-Ngwa A, Van Geertruyden JP, Drakeley C, D'Alessandro U. 2015. The gametocytocidal efficacy of primaquine in malaria asymptomatic carriers treated with dihydroartemisinin-piperaquine in The Gambia (PRINOGAM): study protocol for a randomised controlled trial. Trials 16:70. doi:10.1186/s13063-015-0597-1.
    1. Baird JK, Hoffman SL. 2004. Primaquine therapy for malaria. Clin Infect Dis 39:1336–1345. doi:10.1086/424663.
    1. John GK, Douglas NM, von Seidlein L, Nosten F, Baird JK, White NJ, Price RN. 2012. Primaquine radical cure of Plasmodium vivax: a critical review of the literature. Malar J 11:280. doi:10.1186/1475-2875-11-280.
    1. Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, McCarthy WF, Deye G, Melendez V, Ockenhouse CF. 2013. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med 369:1381–1382. doi:10.1056/NEJMc1301936.
    1. Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, Eappen AG, Richman A, Sim BK, Lee MC, Hoffman SL, Fidock DA. 2011. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc Natl Acad Sci U S A 108:E1214–E1223. doi:10.1073/pnas.1112037108.
    1. Pybus BS, Marcsisin SR, Jin X, Deye G, Sousa JC, Li Q, Caridha D, Zeng Q, Reichard GA, Ockenhouse C, Bennett J, Walker LA, Ohrt C, Melendez V. 2013. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar J 12:212. doi:10.1186/1475-2875-12-212.
    1. Pybus BS, Sousa JC, Jin X, Ferguson JA, Christian RE, Barnhart R, Vuong C, Sciotti RJ, Reichard GA, Kozar MP, Walker LA, Ohrt C, Melendez V. 2012. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine. Malar J 11:259. doi:10.1186/1475-2875-11-259.
    1. Bowman ZS, Jollow DJ, McMillan DC. 2005. Primaquine-induced hemolytic anemia: role of splenic macrophages in the fate of 5-hydroxyprimaquine-treated rat erythrocytes. J Pharmacol Exp Ther 315:980–986. doi:10.1124/jpet.105.090407.
    1. Potter BM, Xie LH, Vuong C, Zhang J, Zhang P, Duan D, Luong TL, Bandara Herath HM, Dhammika Nanayakkara NP, Tekwani BL, Walker LA, Nolan CK, Sciotti RJ, Zottig VE, Smith PL, Paris RM, Read LT, Li Q, Pybus BS, Sousa JC, Reichard GA, Marcsisin SR. 2015. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics. Antimicrob Agents Chemother 59:2380–2387. doi:10.1128/AAC.00015-15.
    1. Fletcher KA, Evans DA, Gilles HM, Greaves J, Bunnag D, Harinasuta T. 1981. Studies on the pharmacokinetics of primaquine. Bull World Health Organ 59:407–412.
    1. Mihaly GW, Ward SA, Edwards G, Orme ML, Breckenridge AM. 1984. Pharmacokinetics of primaquine in man: identification of the carboxylic acid derivative as a major plasma metabolite. Br J Clin Pharmacol 17:441–446. doi:10.1111/j.1365-2125.1984.tb02369.x.
    1. Mihaly GW, Ward SA, Edwards G, Nicholl DD, Orme ML, Breckenridge AM. 1985. Pharmacokinetics of primaquine in man. I. Studies of the absolute bioavailability and effects of dose size. Br J Clin Pharmacol 19:745–750.
    1. Ward SA, Mihaly GW, Edwards G, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA, Orme ML, Breckenridge AM. 1985. Pharmacokinetics of primaquine in man. II. Comparison of acute versus chronic dosage in Thai subjects. Br J Clin Pharmacol 19:751–755.
    1. Greaves J, Evans DA, Gilles HM, Fletcher KA, Bunnag D, Harinasuta T. 1980. Plasma kinetics and urinary excretion of primaquine in man. Br J Clin Pharmacol 10:399–404. doi:10.1111/j.1365-2125.1980.tb01777.x.
    1. Saura J, Nadal E, van den Berg B, Vila M, Bombi JA, Mahy N. 1996. Localization of monoamine oxidases in human peripheral tissues. Life Sci 59:1341–1349. doi:10.1016/0024-3205(96)00459-6.
    1. Bates MD, Meshnick SR, Sigler CI, Leland P, Hollingdale MR. 1990. In vitro effects of primaquine and primaquine metabolites on exoerythrocytic stages of Plasmodium berghei. Am J Trop Med Hyg 42:532–537.
    1. Moore BR, Salman S, Benjamin J, Page-Sharp M, Robinson LJ, Waita E, Batty KT, Siba P, Mueller I, Davis TM, Betuela I. 2014. Pharmacokinetic properties of single-dose primaquine in Papua New Guinean children: feasibility of abbreviated high-dose regimens for radical cure of vivax malaria. Antimicrob Agents Chemother 58:432–439. doi:10.1128/AAC.01437-13.
    1. Barnes KI, Little F, Smith PJ, Evans A, Watkins WM, White NJ. 2006. Sulfadoxine-pyrimethamine pharmacokinetics in malaria: pediatric dosing implications. Clin Pharmacol Ther 80:582–596. doi:10.1016/j.clpt.2006.08.016.
    1. Mwesigwa J, Parikh S, McGee B, German P, Drysdale T, Kalyango JN, Clark TD, Dorsey G, Lindegardh N, Annerberg A, Rosenthal PJ, Kamya MR, Aweeka F. 2010. Pharmacokinetics of artemether-lumefantrine and artesunate-amodiaquine in children in Kampala, Uganda. Antimicrob Agents Chemother 54:52–59. doi:10.1128/AAC.00679-09.
    1. Salman S, Page-Sharp M, Batty KT, Kose K, Griffin S, Siba PM, Ilett KF, Mueller I, Davis TM. 2012. Pharmacokinetic comparison of two piperaquine-containing artemisinin combination therapies in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother 56:3288–3297. doi:10.1128/AAC.06232-11.
    1. Ursing J, Eksborg S, Rombo L, Bergqvist Y, Blessborn D, Rodrigues A, Kofoed PE. 2014. Chloroquine is grossly under dosed in young children with malaria: implications for drug resistance. PLoS One 9:e86801. doi:10.1371/journal.pone.0086801.
    1. Worldwide Antimalarial Resistance Network (WWARN) DP Study Group. 2013. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med 10:e1001564. doi:10.1371/journal.pmed.1001564.
    1. Stone W, Goncalves BP, Bousema T, Drakeley C. 2015. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol 31:287–296. doi:10.1016/j.pt.2015.04.004.
    1. Muirhead-Thomson RC. 1957. The malarial infectivity of an African village population to mosquitoes (Anopheles gambiae); a random xenodiagnostic survey. Am J Trop Med Hyg 6:971–979.
    1. St Jean PL, Xue Z, Carter N, Koh GC, Duparc S, Taylor M, Beaumont C, Llanos-Cuentas A, Rueangweerayut R, Krudsood S, Green JA, Rubio JP. 2016. Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the phase 2b DETECTIVE trial. Malar J 15:97. doi:10.1186/s12936-016-1145-5.
    1. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. 2016. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med 19:69–76. doi:10.1038/gim.2016.80.
    1. Salem AH, Fletcher CV, Brundage RC. 2014. Pharmacometric characterization of efavirenz developmental pharmacokinetics and pharmacogenetics in HIV-infected children. Antimicrob Agents Chemother 58:136–143. doi:10.1128/AAC.01738-13.
    1. Tetelbaum M, Finkelstein Y, Nava-Ocampo AA, Koren G. 2005. Back to basics: understanding drugs in children: pharmacokinetic maturation. Pediatr Rev 26:321–328. doi:10.1542/pir.26-9-321.
    1. Fernandez E, Perez R, Hernandez A, Tejada P, Arteta M, Ramos JT. 2011. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics 3:53–72. doi:10.3390/pharmaceutics3010053.
    1. Sawa P, Shekalaghe SA, Drakeley CJ, Sutherland CJ, Mweresa CK, Baidjoe AY, Manjurano A, Kavishe RA, Beshir KB, Yussuf RU, Omar SA, Hermsen CC, Okell L, Schallig HD, Sauerwein RW, Hallett RL, Bousema T. 2013. Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial. J Infect Dis 207:1637–1645. doi:10.1093/infdis/jit077.
    1. Bangchang KN, Karbwang J, Back DJ. 1992. Primaquine metabolism by human liver microsomes: effect of other antimalarial drugs. Biochem Pharmacol 44:587–590. doi:10.1016/0006-2952(92)90453-P.
    1. White NJ, van Vugt M, Ezzet F. 1999. Clinical pharmacokinetics and pharmacodynamics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet 37:105–125. doi:10.2165/00003088-199937020-00002.
    1. Novartis. 2015. Coartem: full prescribing information. Novartis, Basel, Switzerland: .
    1. Page-Sharp M, Ilett KF, Betuela I, Davis TM, Batty KT. 2012. Simultaneous determination of primaquine and carboxy-primaquine in plasma using solid-phase extraction and LC-MS assay. J Chromatogr B Anal Technol Biomed Life Sci 902:142–146. doi:10.1016/j.jchromb.2012.06.019.
    1. . 2016. Allele nomenclature for cytochrome P450 enzymes. Human Cytochrome P450 (CYP) Allele Nomenclature Database. .
    1. Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS. 2008. The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83:234–242. doi:10.1038/sj.clpt.6100406.
    1. Tsamandouras N, Rostami-Hodjegan A, Aarons L. 2015. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modeling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol 79:48–55. doi:10.1111/bcp.12234.
    1. Keizer RJ, Karlsson MO, Hooker A. 2013. Modeling and Simulation Workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol 2:e50. doi:10.1038/psp.2013.24.
    1. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A. 2005. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl 11:1481–1493. doi:10.1002/lt.20519.
    1. Anderson BJ, Holford NH. 2011. Tips and traps analyzing pediatric PK data. Paediatr Anaesth 21:222–237. doi:10.1111/j.1460-9592.2011.03536.x.
    1. Savic RM, Karlsson MO. 2009. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J 11:558–569. doi:10.1208/s12248-009-9133-0.
    1. Gordi T, Xie R, Huong NV, Huong DX, Karlsson MO, Ashton M. 2005. A semiphysiological pharmacokinetic model for artemisinin in healthy subjects incorporating autoinduction of metabolism and saturable first-pass hepatic extraction. Br J Clin Pharmacol 59:189–198. doi:10.1111/j.1365-2125.2004.02321.x.
    1. van Erp NP, van Herpen CM, de Wit D, Willemsen A, Burger DM, Huitema AD, Kapiteijn E, Ter Heine R. 2016. A semiphysiological population model to quantify the effect of hematocrit on Everolimus pharmacokinetics and pharmacodynamics in cancer patients. Clin Pharmacokinet 55:1447–1456. doi:10.1007/s40262-016-0414-3.
    1. Shen J, Boeckmann A, Vick A. 2012. Implementation of dose superimposition to introduce multiple doses for a mathematical absorption model (transit compartment model). J Pharmacokinet Pharmacodyn 39:251–262. doi:10.1007/s10928-012-9247-3.
    1. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. 2011. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13:143–151. doi:10.1208/s12248-011-9255-z.
    1. Beal SL. 2001. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481–504. doi:10.1023/A:1012299115260.
    1. Keizer RJ, Zandvliet AS, Beijnen JH, Schellens JH, Huitema AD. 2012. Performance of methods for handling missing categorical covariate data in population pharmacokinetic analyses. AAPS J 14:601–611. doi:10.1208/s12248-012-9373-2.

Source: PubMed

3
구독하다