Potential Benefits and Harms of Intermittent Energy Restriction and Intermittent Fasting Amongst Obese, Overweight and Normal Weight Subjects-A Narrative Review of Human and Animal Evidence

Michelle Harvie, Anthony Howell, Michelle Harvie, Anthony Howell

Abstract

Intermittent energy restriction (IER) has become popular as a means of weight control amongst people who are overweight and obese, and is also undertaken by normal weight people hoping spells of marked energy restriction will optimise their health. This review summarises randomised comparisons of intermittent and isoenergetic continuous energy restriction for weight loss to manage overweight and obesity. It also summarises the potential beneficial or adverse effects of IER on body composition, adipose stores and metabolic effects from human studies, including studies amongst normal weight subjects and relevant animal experimentation. Six small short term (<6 month) studies amongst overweight or obese individuals indicate that intermittent energy restriction is equal to continuous restriction for weight loss, with one study reporting greater reductions in body fat, and two studies reporting greater reductions in HOMA insulin resistance in response to IER, with no obvious evidence of harm. Studies amongst normal weight subjects and different animal models highlight the potential beneficial and adverse effects of intermittent compared to continuous energy restriction on ectopic and visceral fat stores, adipocyte size, insulin resistance, and metabolic flexibility. The longer term benefits or harms of IER amongst people who are overweight or obese, and particularly amongst normal weight subjects, is not known and is a priority for further investigation.

Keywords: fasting; intermittent energy restriction; weight gain; weight loss.

Conflict of interest statement

The authors declare no conflict of interest. Michelle Harvie and Anthony Howell have written three self-help books for the public to follow intermittent diets. All author proceeds are paid directly to the charity Prevent Breast Cancer Limited (formally known as Genesis Breast Cancer Prevention Appeal Ltd., Registered Charity Number: 1109839) to fund breast cancer research.

Figures

Figure 1
Figure 1
Degree of dietary energy restriction with IER in Manchester studies. The IER cohort undertook a 70% energy restriction on two consecutive days per week and additionally undertook an unplanned carry-over energy restriction to an average of 20% below their baseline intake on the remaining five days of the week (solid line). The restricted days and the unplanned carry-over energy restriction resulted in an equivalent overall 35% energy restriction over the trial period (dashed line).

References

    1. Whitlock G., Lewington S., Sherliker P., Clarke R., Emberson J., Halsey J., Qizilbash N., Collins R., Peto R. Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–1096.
    1. Sun Q., Townsend M.K., Okereke O.I., Franco O.H., Hu F.B., Grodstein F. Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: Prospective cohort study. BMJ. 2009;339:b3796. doi: 10.1136/bmj.b3796.
    1. Forouzanfar M.H., Alexander L., Anderson H.R., Bachman V.F., Biryukov S., Brauer M., Burnett R., Casey D., Coates M.M., Cohen A., et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:2287–2323. doi: 10.1016/S0140-6736(15)00128-2.
    1. Knowler W.C., Fowler S.E., Hamman R.F., Christophi C.A., Hoffman H.J., Brenneman A.T., Brown-Friday J.O., Goldberg R., Venditti E., Nathan D.M. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet. 2009;374:1677–1686.
    1. Kritchevsky S.B., Beavers K.M., Miller M.E., Shea M.K., Houston D.K., Kitzman D.W., Nicklas B.J. Intentional weight loss and all-cause mortality: A meta-analysis of randomized clinical trials. PLoS ONE. 2015;10:e0121993. doi: 10.1371/journal.pone.0121993.
    1. Veronese N., Facchini S., Stubbs B., Luchini C., Solmi M., Manzato E., Sergi G., Maggi S., Cosco T., Fontana L. Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016;72:87–94. doi: 10.1016/j.neubiorev.2016.11.017.
    1. Christensen R., Bartels E.M., Astrup A., Bliddal H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2007;66:433–439. doi: 10.1136/ard.2006.065904.
    1. Chung K.W., Kim D.H., Park M.H., Choi Y.J., Kim N.D., Lee J., Yu B.P., Chung H.Y. Recent advances in calorie restriction research on aging. Exp. Gerontol. 2013;48:1049–1053. doi: 10.1016/j.exger.2012.11.007.
    1. Anastasiou C.A., Karfopoulou E., Yannakoulia M. Weight regaining: From statistics and behaviors to physiology and metabolism. Metabolism. 2015;64:1395–1407. doi: 10.1016/j.metabol.2015.08.006.
    1. Wing R.R., Blair E.H., Bononi P., Marcus M.D., Watanabe R., Bergman R.N. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care. 1994;17:30–36. doi: 10.2337/diacare.17.1.30.
    1. Henry R.R., Scheaffer L., Olefsky J.M. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1985;61:917–925. doi: 10.1210/jcem-61-5-917.
    1. Harvie M.N., Pegington M., Mattson M.P., Frystyk J., Dillon B., Evans G., Cuzick J., Jebb S.A., Martin B., Cutler R.G., et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2011;35:714–727. doi: 10.1038/ijo.2010.171.
    1. Harvie M., Wright C., Pegington M., McMullan D., Mitchell E., Martin B., Cutler R.G., Evans G., Whiteside S., Maudsley S., et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013;110:1534–1547. doi: 10.1017/S0007114513000792.
    1. Varady K.A., Bhutani S., Klempel M.C., Kroeger C.M. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10:119. doi: 10.1186/1476-511X-10-119.
    1. Heilbronn L.K., Smith S.R., Martin C.K., Anton S.D., Ravussin E. Alternate-day fasting in nonobese subjects: Effects on body weight, body composition, and energy metabolism. Am. J. Clin. Nutr. 2005;81:69–73.
    1. Halberg N., Henriksen M., Soderhamn N., Stallknecht B., Ploug T., Schjerling P., Dela F. Effect of intermittent fasting and refeeding on insulin action in healthy men. J. Appl. Physiol. 2005;99:2128–2136. doi: 10.1152/japplphysiol.00683.2005.
    1. Soeters M.R., Lammers N.M., Dubbelhuis P.F., Ackermans M., Jonkers-Schuitema C.F., Fliers E., Sauerwein H.P., Aerts J.M., Serlie M.J. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism. Am. J. Clin. Nutr. 2009;90:1244–1251. doi: 10.3945/ajcn.2008.27327.
    1. Catenacci V.A., Pan Z., Ostendorf D., Brannon S., Gozansky W.S., Mattson M.P., Martin B., MacLean P.S., Melanson E.L., Troy D.W. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity. 2016;24:1874–1883. doi: 10.1002/oby.21581.
    1. Antoni R., Johnston K.L., Collins A.L., Robertson M.D. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants. Br. J. Nutr. 2016;115:951–959. doi: 10.1017/S0007114515005346.
    1. Anderson J.W., Herman R.H. Effect of fasting, caloric restriction, and refeeding on glucose tolerance of normal men. Am. J. Clin. Nutr. 1972;25:41–52.
    1. Nakamura Y., Walker B.R., Ikuta T. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress. 2015;19:1–21. doi: 10.3109/10253890.2015.1121984.
    1. NHS Choices News Analysis: Does the 5:2 Fast Diet Work? NHS Choices. May 1, 2013. [(accessed on 8 December 2016)]. Available online: .
    1. Young E. Deprive yourself: The real benefits of fasting. New Scientist. Nov 12, 2012. [(accessed on 8 December 2016)]. Available online:
    1. Davis C.S., Clarke R.E., Coulter S.N., Rounsefell K.N., Walker R.E., Rauch C.E., Huggins C.E., Ryan L. Intermittent energy restriction and weight loss: A systematic review. Eur. J. Clin. Nutr. 2016;70:292–299. doi: 10.1038/ejcn.2015.195.
    1. Seimon R.V., Roekenes J.A., Zibellini J., Zhu B., Gibson A.A., Hills A.P., Wood R.E., King N.A., Byrne N.M., Sainsbury A. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol. Cell Endocrinol. 2015;418:153–172. doi: 10.1016/j.mce.2015.09.014.
    1. Hill J.O., Schlundt D.G., Sbrocco T., Sharp T., Pope-Cordle J., Stetson B., Kaler M., Heim C. Evaluation of an alternating-calorie diet with and without exercise in the treatment of obesity. Am. J. Clin. Nutr. 1989;50:248–254.
    1. Ash S., Reeves M.M., Yeo S., Morrison G., Carey D., Capra S. Effect of intensive dietetic interventions on weight and glycaemic control in overweight men with Type II diabetes: A randomised trial. Int. J. Obes. Relat. Metab. Disord. 2003;27:797–802. doi: 10.1038/sj.ijo.0802295.
    1. de Groot L.C., van Es A.J., van Raaij J.M., Vogt J.E., Hautvast J.G. Adaptation of energy metabolism of overweight women to alternating and continuous low energy intake. Am. J. Clin. Nutr. 1989;50:1314–1323.
    1. Keogh J.B., Pedersen E., Petersen K.S., Clifton P.M. Effects of intermittent compared to continuous energy restriction on short-term weight loss and long-term weight loss maintenance. Clin. Obes. 2014;4:150–156. doi: 10.1111/cob.12052.
    1. Williams K.V., Mullen M.L., Kelley D.E., Wing R.R. The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care. 1998;21:2–8. doi: 10.2337/diacare.21.1.2.
    1. Wing R.R., Jeffery R.W. Prescribed “breaks” as a means to disrupt weight control efforts. Obes. Res. 2003;11:287–291. doi: 10.1038/oby.2003.43.
    1. Wing R.R., Blair E., Marcus M., Epstein L.H., Harvey J. Year-long weight loss treatment for obese patients with type II diabetes: Does including an intermittent very-low-calorie diet improve outcome? Am. J. Med. 1994;97:354–362. doi: 10.1016/0002-9343(94)90302-6.
    1. Carter S., Clifton P.M., Keogh J.B. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res. Clin. Pract. 2016;122:106–112. doi: 10.1016/j.diabres.2016.10.010.
    1. Zuo L., He F., Tinsley G.M., Pannell B.K., Ward E., Arciero P.J. Comparison of high-protein, intermittent fasting low-calorie diet and heart healthy diet for vascular health of the obese. Front. Physiol. 2016;7:350. doi: 10.3389/fphys.2016.00350.
    1. Moroshko I., Brennan L., O’Brien P. Predictors of dropout in weight loss interventions: A systematic review of the literature. Obes. Rev. 2011;12:912–934. doi: 10.1111/j.1467-789X.2011.00915.x.
    1. Sacks F.M., Bray G.A., Carey V.J., Smith S.R., Ryan D.H., Anton S.D., McManus K., Champagne C.M., Bishop L.M., Laranjo N., et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 2009;360:859–873. doi: 10.1056/NEJMoa0804748.
    1. Hill R.J., Davies P.S. The validity of self-reported energy intake as determined using the doubly labelled water technique. Br. J. Nutr. 2001;85:415–430. doi: 10.1079/BJN2000281.
    1. Klempel M.C., Bhutani S., Fitzgibbon M., Freels S., Varady K.A. Dietary and physical activity adaptations to alternate day modified fasting: Implications for optimal weight loss. Nutr. J. 2010;9:35. doi: 10.1186/1475-2891-9-35.
    1. Wing R.R., Phelan S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005;82:222S–225S.
    1. Wegman M.P., Guo M., Bennion D.M., Shankar M.N., Chrzanowski S.M., Goldberg L.A., Xu J., Williams T.A., Lu X., Hsu S.I., et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. 2014;18:162–172. doi: 10.1089/rej.2014.1624.
    1. Taylor R. Banting Memorial lecture 2012: Reversing the twin cycles of type 2 diabetes. Diabet. Med. 2013;30:267–275. doi: 10.1111/dme.12039.
    1. Kirk E., Reeds D.N., Finck B.N., Mayurranjan S.M., Patterson B.W., Klein S. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136:1552–1560. doi: 10.1053/j.gastro.2009.01.048.
    1. Lim E.L., Hollingsworth K.G., Aribisala B.S., Chen M.J., Mathers J.C., Taylor R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54:2506–2514. doi: 10.1007/s00125-011-2204-7.
    1. Salgin B., Marcovecchio M.L., Humphreys S.M., Hill N., Chassin L.J., Lunn D.J., Hovorka R., Dunger D.B. Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects. Am. J. Physiol. Endocrinol. Metab. 2009;296:E454–E461. doi: 10.1152/ajpendo.90613.2008.
    1. Browning J.D., Baxter J., Satapati S., Burgess S.C. The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men. J. Lipid. Res. 2012;53:577–586. doi: 10.1194/jlr.P020867.
    1. Moller L., Stodkilde-Jorgensen H., Jensen F.T., Jorgensen J.O. Fasting in healthy subjects is associated with intrahepatic accumulation of lipids as assessed by 1H-magnetic resonance spectroscopy. Clin. Sci. 2008;114:547–552. doi: 10.1042/CS20070217.
    1. Heilbronn L.K., Civitarese A.E., Bogacka I., Smith S.R., Hulver M., Ravussin E. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes. Res. 2005;13:574–581. doi: 10.1038/oby.2005.61.
    1. Soeters M.R., Sauerwein H.P., Groener J.E., Aerts J.M., Ackermans M.T., Glatz J.F., Fliers E., Serlie M.J. Gender-related differences in the metabolic response to fasting. J. Clin. Endocrinol. Metab. 2007;92:3646–3652. doi: 10.1210/jc.2007-0552.
    1. Gan S.K., Watts G.F. Is adipose tissue lipolysis always an adaptive response to starvation?: Implications for non-alcoholic fatty liver disease. Clin. Sci. 2008;114:543–545. doi: 10.1042/CS20070461.
    1. Varady K.A., Allister C.A., Roohk D.J., Hellerstein M.K. Improvements in body fat distribution and circulating adiponectin by alternate-day fasting versus calorie restriction. J. Nutr. Biochem. 2010;21:188–195. doi: 10.1016/j.jnutbio.2008.11.001.
    1. Varady K.A., Roohk D.J., Loe Y.C., McEvoy-Hein B.K., Hellerstein M.K. Effects of modified alternate-day fasting regimens on adipocyte size, triglyceride metabolism, and plasma adiponectin levels in mice. J. Lipid Res. 2007;48:2212–2219. doi: 10.1194/jlr.M700223-JLR200.
    1. Goossens G.H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 2008;94:206–218. doi: 10.1016/j.physbeh.2007.10.010.
    1. Cerqueira F.M., da Cunha F.M., Caldeira da Silva C.C., Chausse B., Romano R.L., Garcia C.C., Colepicolo P., Medeiros M.H., Kowaltowski A.J. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic. Biol. Med. 2011;51:1454–1460. doi: 10.1016/j.freeradbiomed.2011.07.006.
    1. Dorighello G.G., Rovani J.C., Luhman C.J., Paim B.A., Raposo H.F., Vercesi A.E., Oliveira H.C. Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice. Br. J. Nutr. 2014;111:979–986. doi: 10.1017/S0007114513003383.
    1. Kliewer K.L., Ke J.Y., Lee H.Y., Stout M.B., Cole R.M., Samuel V.T., Shulman G.I., Belury M.A. Short-term food restriction followed by controlled refeeding promotes gorging behavior, enhances fat deposition, and diminishes insulin sensitivity in mice. J. Nutr. Biochem. 2015;26:721–728. doi: 10.1016/j.jnutbio.2015.01.010.
    1. Chaston T.B., Dixon J.B., O’Brien P.E. Changes in fat-free mass during significant weight loss: A systematic review. Int. J. Obes. 2007;31:743–750. doi: 10.1038/sj.ijo.0803483.
    1. Varady K.A. Intermittent versus daily calorie restriction: Which diet regimen is more effective for weight loss? Obes. Rev. 2011;12:593–601. doi: 10.1111/j.1467-789X.2011.00873.x.
    1. Heymsfield S.B., Gonzalez M.C., Shen W., Redman L., Thomas D. Weight loss composition is one-fourth fat-free mass: A critical review and critique of this widely cited rule. Obes. Rev. 2014;15:310–321. doi: 10.1111/obr.12143.
    1. Soenen S., Martens E.A., Hochstenbach-Waelen A., Lemmens S.G., Westerterp-Plantenga M.S. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. J. Nutr. 2013;143:591–596. doi: 10.3945/jn.112.167593.
    1. Varady K.A., Bhutani S., Church E.C., Klempel M.C. Short-term modified alternate-day fasting: A novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr. 2009;90:1138–1143. doi: 10.3945/ajcn.2009.28380.
    1. Varady K.A., Bhutani S., Klempel M.C., Kroeger C.M., Trepanowski J.F., Haus J.M., Hoddy K.K., Calvo Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J. 2013;12:146. doi: 10.1186/1475-2891-12-146.
    1. Bhutani S., Klempel M.C., Kroeger C.M., Trepanowski J.F., Varady K.A. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–1379. doi: 10.1002/oby.20353.
    1. Weinheimer E.M., Sands L.P., Campbell W.W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: Implications for sarcopenic obesity. Nutr. Rev. 2010;68:375–388. doi: 10.1111/j.1753-4887.2010.00298.x.
    1. Schwartz A., Kuk J.L., Lamothe G., Doucet E. Greater than predicted decrease in resting energy expenditure and weight loss: Results from a systematic review. Obesity. 2012;20:2307–2310. doi: 10.1038/oby.2012.34.
    1. Rosenbaum M., Leibel R.L. Adaptive thermogenesis in humans. Int. J. Obes. 2010;34:S47–S55. doi: 10.1038/ijo.2010.184.
    1. Siervo M., Faber P., Lara J., Gibney E.R., Milne E., Ritz P., Lobley G.E., Elia M., Stubbs R.J., Johnstone A.M. Imposed rate and extent of weight loss in obese men and adaptive changes in resting and total energy expenditure. Metabolism. 2015;64:896–904. doi: 10.1016/j.metabol.2015.03.011.
    1. Soeters M.R., Soeters P.B., Schooneman M.G., Houten S.M., Romijn J.A. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am. J. Physiol. Endocrinol. Metab. 2012;303:E1397–E1407. doi: 10.1152/ajpendo.00397.2012.
    1. Hoddy K.K., Kroeger C.M., Trepanowski J.F., Barnosky A.R., Bhutani S., Varady K.A. Safety of alternate day fasting and effect on disordered eating behaviors. Nutr. J. 2015;14:1–3. doi: 10.1186/s12937-015-0029-9.
    1. Wilcox G. Insulin and insulin resistance. Clin. Biochem. Rev. 2005;26:19–39.
    1. Hedrington M.S., Davis S.N. Sexual dimorphism in glucose and lipid metabolism during fasting, hypoglycemia, and exercise. Front. Endocrinol. 2015;6:61. doi: 10.3389/fendo.2015.00061.
    1. Gormsen L.C., Gjedsted J., Gjedde S., Norrelund H., Christiansen J.S., Schmitz O., Jorgensen J.O., Moller N. Dose-response effects of free fatty acids on amino acid metabolism and ureagenesis. Acta Physiol. 2008;192:369–379. doi: 10.1111/j.1748-1716.2007.01771.x.
    1. Anson R.M., Guo Z., de Cabo R., Iyun T., Rios M., Hagepanos A., Ingram D.K., Lane M.A., Mattson M.P. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc. Natl. Acad. Sci. USA. 2003;100:6216–6220. doi: 10.1073/pnas.1035720100.
    1. Belkacemi L., Selselet-Attou G., Hupkens E., Nguidjoe E., Louchami K., Sener A., Malaisse W.J. Intermittent fasting modulation of the diabetic syndrome in streptozotocin-injected rats. Int. J. Endocrinol. 2012;2012:962012. doi: 10.1155/2012/962012.
    1. Higashida K., Fujimoto E., Higuchi M., Terada S. Effects of alternate-day fasting on high-fat diet-induced insulin resistance in rat skeletal muscle. Life Sci. 2013;93:208–213. doi: 10.1016/j.lfs.2013.06.007.
    1. Bloom W.L., Azar G., Clark J., MacKay J.H. Comparison of metabolic changes in fasting obese and lean patients. Ann. N. Y. Acad. Sci. 1965;131:623–631. doi: 10.1111/j.1749-6632.1965.tb34825.x.
    1. Muoio D.M. Metabolic inflexibility: When mitochondrial indecision leads to metabolic gridlock. Cell. 2014;159:1253–1262. doi: 10.1016/j.cell.2014.11.034.
    1. Karbowska J., Kochan Z. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue. Nutrition. 2012;28:294–299. doi: 10.1016/j.nut.2011.06.009.
    1. Huffman K.M., Redman L.M., Landerman L.R., Pieper C.F., Stevens R.D., Muehlbauer M.J., Wenner B.R., Bain J.R., Kraus V.B., Newgard C.B., et al. Caloric restriction alters the metabolic response to a mixed-meal: Results from a randomized, controlled trial. PLoS ONE. 2012;7:e28190. doi: 10.1371/journal.pone.0028190.
    1. Da Luz F.Q., Hay P., Gibson A.A., Touyz S.W., Swinbourne J.M., Roekenes J.A., Sainsbury A. Does severe dietary energy restriction increase binge eating in overweight or obese individuals? A systematic review. Obes. Rev. 2015;16:652–665. doi: 10.1111/obr.12295.
    1. Laessle R.G., Platte P., Schweiger U., Pirke K.M. Biological and psychological correlates of intermittent dieting behavior in young women. A model for bulimia nervosa. Physiol. Behav. 1996;60:1–5. doi: 10.1016/0031-9384(95)02215-5.
    1. Olson B.R., Cartledge T., Sebring N., Defensor R., Nieman L. Short-term fasting affects luteinizing hormone secretory dynamics but not reproductive function in normal-weight sedentary women. J. Clin. Endocrinol. Metab. 1995;80:1187–1193.
    1. Varady K.A., Bhutani S., Klempel M.C., Phillips S.A. Improvements in vascular health by a low-fat diet, but not a high-fat diet, are mediated by changes in adipocyte biology. Nutr. J. 2011;10:8. doi: 10.1186/1475-2891-10-8.
    1. Birkenhager J.C., Haak A., Ackers J.G. Changes in body composition during treatment of obesity by intermittent starvation. Metabolism. 1968;17:391–399. doi: 10.1016/0026-0495(68)90061-9.
    1. Hoddy K.K., Kroeger C.M., Trepanowski J.F., Barnosky A., Bhutani S., Varady K.A. Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults. Obesity. 2014;22:2524–2531. doi: 10.1002/oby.20909.
    1. Morrow P.G., Marshall W.P., Kim H.J., Kalkhoff R.K. Metabolic response to starvation. II. Effects of sex steroid administration to pre- and postmenopausal women. Metabolism. 1981;30:274–278. doi: 10.1016/0026-0495(81)90151-7.
    1. Brandhorst S., Choi I.Y., Wei M., Cheng C.W., Sedrakyan S., Navarrete G., Dubeau L., Yap L.P., Park R., Vinciguerra M., et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015;22:86–99. doi: 10.1016/j.cmet.2015.05.012.
    1. Rusli F., Boekschoten M.V., Zubia A.A., Lute C., Muller M., Steegenga W.T. A weekly alternating diet between caloric restriction and medium fat protects the liver from fatty liver development in middle-aged C57BL/6J mice. Mol. Nutr. Food Res. 2015;59:533–543. doi: 10.1002/mnfr.201400621.

Source: PubMed

3
구독하다