Pharmacodynamic effects of direct AMP kinase activation in humans with insulin resistance and non-alcoholic fatty liver disease: A phase 1b study

Pascale Fouqueray, Sebastien Bolze, Julie Dubourg, Sophie Hallakou-Bozec, Pierre Theurey, Jean-Marie Grouin, Clémence Chevalier, Pascale Gluais-Dagorn, David E Moller, Kenneth Cusi, Pascale Fouqueray, Sebastien Bolze, Julie Dubourg, Sophie Hallakou-Bozec, Pierre Theurey, Jean-Marie Grouin, Clémence Chevalier, Pascale Gluais-Dagorn, David E Moller, Kenneth Cusi

Abstract

AMPK is an energy sensor modulating metabolism, inflammation, and a target for metabolic disorders. Metabolic dysfunction results in lower AMPK activity. PXL770 is a direct AMPK activator, inhibiting de novo lipogenesis (DNL) and producing efficacy in preclinical models. We aimed to assess pharmacokinetics, safety, and pharmacodynamics of PXL770 in humans with metabolic syndrome-associated fatty liver disease. In a randomized, double-blind four-week trial, 12 overweight/obese patients with non-alcoholic fatty liver disease (NAFLD) and insulin resistance received PXL770 500 mg QD; 4 subjects received matching placebo. Endpoints included pharmacokinetics, hepatic fractional DNL, oral glucose tolerance testing, additional pharmacodynamic parameters, and safety. PK parameters show adequate plasma exposure in NAFLD patients for daily oral dosing. PXL770 decreases DNL-both peak and AUC are reduced versus baseline-and improves glycemic parameters and indices of insulin sensitivity versus baseline. Assessment of specific lipids reveals decrease in diacyglycerols/triacylglycerols. Safety/tolerability are similar to placebo. These results unveil initial human translation of AMPK activation and support this therapeutic strategy for metabolic disorders.

Trial registration: ClinicalTrials.gov NCT03950882.

Keywords: AMPK activation; DNL; MAFLD; NAFLD; NASH; PXL770; de novo lipogenesis; insulin resistance; metabolic syndrome-associated fatty liver disease; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; pharmacodynamics; pharmacokinetics; plasma lipids.

Conflict of interest statement

C.C., D.E.M., F.M, J.D., P.G.-D., P.F., P.T., S.B., and S.H.-B. are employees of Poxel SA and have received stock options as a condition of employment. K.C. has served as a consultant for Allergan, Altimmune, Arrowhead, AstraZeneca, BMS, Boehringer Ingelheim, Coherus, Eli Lilly, Fractyl, Hanmi, Genentech, Gilead, Intercept, Janssen, Pfizer, Poxel, Prosciento, Madrigal, and Novo Nordisk. The study was funded and designed by the sponsor (Poxel SA) with the support of expert consultants in the NASH field. The corresponding author, all co-authors, and the sponsor had full responsibility for the decision to submit for publication. Patents WO2011080277A1 and WO2020099678A1, owned by Poxel SA, are related to this work.

© 2021 Poxel SA.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Study design and patient disposition
Figure 2
Figure 2
Mean plasma levels of PXL770 Steady-state plasma samples were obtained from subjects (n = 12 patients) receiving daily oral doses of 500 mg PXL770 on two occasions during the study, day 14 and day 26 (Figure 1), under fasted and fed conditions, respectively. Samples were analyzed to determine drug concentrations using a validated liquid chromatography with tandem mass spectrometry (LC-MS/MS) method.
Figure 3
Figure 3
PXL770 inhibits de novo lipogenesis (DNL) and improves glucose metabolism and insulin sensitivity DNL was measured as described in StarMethods by labeling of body water via D20 enrichment during the day prior to testing followed by oral fructose loading during the test days −1 and 28 (Figure 1). Fractional DNL (% of triglyceride-palmitate) was calculated based on measurements obtained at the indicated time points. Oral glucose tolerance tests were performed after an overnight fast at baseline and on day 27 during treatment. (A) Time course of mean (+SEM) DNL values for PXL770 (left panel; n = 12, p = 0.0045 for peak DNL, defined as average of last 3 time points) or placebo (right panel; n = 4, NS) treated subjects at baseline (dashed line) versus end of treatment on day 28 (solid line). (B) Individual patient results for DNL tests performed at baseline versus after 28 days of daily exposure to PXL770 (n = 12 patients). (C) Mean and individual values for incremental glucose AUC during the oral glucose tolerance test, OGTT (n = 4 placebo, n = 12 PXL770), and for the Matsuda insulin sensitivity index, data derived from the OGTT (n = 4 placebo, n = 10 PXL770), in subjects treated with placebo or PXL770 at baseline versus day 27. Matsuda values were calculated based on data obtained during OGTT tests as described in StarMethods. ∗p = 0.031; ∗∗p = 0.014.
Figure 4
Figure 4
PXL770 acutely decreases diacylglycerides and triacylglycerols Plasma samples were assayed using liquid chromatography coupled to mass spectrometry to detect and quantitate a range of selected circulating lipids. Day 14 samples were collected from both placebo and PXL770 treated subjects at pre-dose (trough) and 2 h post-dose (Cmax) time points; both under fasted conditions. Plasma total DG and TG are expressed as relative intensity (sum of the normalized peak areas of all detected DG and TG species) pre-dose and 2 h post-dose at day 14 for placebo (n = 4 patients) and PXL770 (n = 12 patients); mean ± SD, ∗p 

References

    1. Carling D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 2017;45:31–37.
    1. Lin S.C., Hardie D.G. AMPK: Sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313.
    1. Kim S.J., Tang T., Abbott M., Viscarra J.A., Wang Y., Sul H.S. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol. Cell. Biol. 2016;36:1961–1976.
    1. Kopietz F., Berggreen C., Larsson S., Säll J., Ekelund M., Sakamoto K., Degerman E., Holm C., Göransson O. AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes. Am. J. Physiol. Endocrinol. Metab. 2018;315:E1075–E1085.
    1. Liong S., Lappas M. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women. J. Physiol. Biochem. 2015;71:703–717.
    1. Chopra I., Li H.F., Wang H., Webster K.A. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. 2012;55:783–794.
    1. Salt I.P., Palmer T.M. Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opin. Investig. Drugs. 2012;21:1155–1167.
    1. Liang Z., Li T., Jiang S., Xu J., Di W., Yang Z., Hu W., Yang Y. AMPK: a novel target for treating hepatic fibrosis. Oncotarget. 2017;8:62780–62792.
    1. Zhao P., Sun X., Chaggan C., Liao Z., In Wong K., He F., Singh S., Loomba R., Karin M., Witztum J.L., Saltiel A.R. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science. 2020;367:652–660.
    1. Steinberg G.R., Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 2019;18:527–551.
    1. Weidling I., Swerdlow R.H. The ABCD’s of 5¢-adenosine monophosphate-activated protein kinase and adrenoleukodystrophy. J. Neurochem. 2016;138:10–13.
    1. Song X., Tsakiridis E., Steinberg G.R., Pei Y. Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease. Cell. Signal. 2020;73:109704.
    1. Smith B.K., Marcinko K., Desjardins E.M., Lally J.S., Ford R.J., Steinberg G.R. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am. J. Physiol. Endocrinol. Metab. 2016;311:E730–E740.
    1. Cotter T.G., Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020;158:1851–1864.
    1. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–725.e6.
    1. Smith G.I., Shankaran M., Yoshino M., Schweitzer G.G., Chondronikola M., Beals J.W., Okunade A.L., Patterson B.W., Nyangau E., Field T., et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Invest. 2020;130:1453–1460.
    1. Kitade H., Chen G., Ni Y., Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017;9:387.
    1. Khan R.S., Bril F., Cusi K., Newsome P.N. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 2019;70:711–724.
    1. Cusi K. Time to include nonalcoholic steatohepatitis in the management of patients with Type 2 diabetes. Diabetes Care. 2020;43:275–279.
    1. Gastaldelli A., Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019;1:312–328.
    1. Eslam M., Newsome P.N., Sarin S.K., Anstee Q.M., Targher G., Romero-Gomez M., Zelber-Sagi S., Wai-Sun Wong V., Dufour J.F., Schattenberg J.M., et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020;73:202–209.
    1. Eslam M., Sanyal A.J., George J., International Consensus Panel International Consensus P. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999–2014.e1.
    1. Gluais-Dagorn P., Foretz M., Steinberg G.R., et al. Hepatol Commun; 2021. Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis.
    1. Park C.C., Nguyen P., Hernandez C., Bettencourt R., Ramirez K., Fortney L., Hooker J., Sy E., Savides M.T., Alquiraish M.H., et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152:598–607.e2.
    1. Qu H.Q., Li Q., Rentfro A.R., Fisher-Hoch S.P., McCormick J.B. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning. PLoS ONE. 2011;6:e21041.
    1. Paglialunga S., Dehn C.A. Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease. Lipids Health Dis. 2016;15:159.
    1. Matsuda M., DeFronzo R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22:1462–1470.
    1. Mari A., Pacini G., Murphy E., Ludvik B., Nolan J.J. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24:539–548.
    1. Viollet B., Horman S., Leclerc J., Lantier L., Foretz M., Billaud M., Giri S., Andreelli F. AMPK inhibition in health and disease. Crit. Rev. Biochem. Mol. Biol. 2010;45:276–295.
    1. Stiede K., Miao W., Blanchette H.S., Beysen C., Harriman G., Harwood H.J., Jr., Kelley H., Kapeller R., Schmalbach T., Westlin W.F. Acetyl-coenzyme A carboxylase inhibition reduces de novo lipogenesis in overweight male subjects: A randomized, double-blind, crossover study. Hepatology. 2017;66:324–334.
    1. Fullerton M.D., Galic S., Marcinko K., Sikkema S., Pulinilkunnil T., Chen Z.P., O’Neill H.M., Ford R.J., Palanivel R., O’Brien M., et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 2013;19:1649–1654.
    1. Boudaba N., Marion A., Huet C., Pierre R., Viollet B., Foretz M. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. EBioMedicine. 2018;28:194–209.
    1. Woods A., Williams J.R., Muckett P.J., Mayer F.V., Liljevald M., Bohlooly-Y M., Carling D. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep. 2017;18:3043–3051.
    1. Garcia D., Hellberg K., Chaix A., Wallace M., Herzig S., Badur M.G., Lin T., Shokhirev M.N., Pinto A.F.M., Ross D.S., et al. Genetic liver-specific AMPK activation protects against diet-induced obesity and NAFLD. Cell Rep. 2019;26:192–208.e6.
    1. Gómez-Galeno J.E., Dang Q., Nguyen T.H., Boyer S.H., Grote M.P., Sun Z., Chen M., Craigo W.A., van Poelje P.D., MacKenna D.A., et al. A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med. Chem. Lett. 2010;1:478–482.
    1. Zhao P., Saltiel A.R. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. J. Biol. Chem. 2020;295:12279–12289.
    1. Lambert J.E., Ramos-Roman M.A., Browning J.D., Parks E.J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:726–735.
    1. Weikel K.A., Cacicedo J.M., Ruderman N.B., Ido Y. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. Am. J. Physiol. Cell Physiol. 2015;308:C249–C263.
    1. Kraegen E.W., Saha A.K., Preston E., Wilks D., Hoy A.J., Cooney G.J., Ruderman N.B. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Am. J. Physiol. Endocrinol. Metab. 2006;290:E471–E479.
    1. Lee M.J., Feliers D., Mariappan M.M., Sataranatarajan K., Mahimainathan L., Musi N., Foretz M., Viollet B., Weinberg J.M., Choudhury G.G., Kasinath B.S. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol. 2007;292:F617–F627.
    1. Gauthier M.S., O’Brien E.L., Bigornia S., Mott M., Cacicedo J.M., Xu X.J., Gokce N., Apovian C., Ruderman N. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem. Biophys. Res. Commun. 2011;404:382–387.
    1. Xu X.J., Gauthier M.S., Hess D.T., Apovian C.M., Cacicedo J.M., Gokce N., Farb M., Valentine R.J., Ruderman N.B. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J. Lipid Res. 2012;53:792–801.
    1. Sriwijitkamol A., Coletta D.K., Wajcberg E., Balbontin G.B., Reyna S.M., Barrientes J., Eagan P.A., Jenkinson C.P., Cersosimo E., DeFronzo R.A., et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes. 2007;56:836–848.
    1. Diamanti-Kandarakis E., Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 2012;33:981–1030.
    1. Cool B., Zinker B., Chiou W., Kifle L., Cao N., Perham M., Dickinson R., Adler A., Gagne G., Iyengar R., et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–416.
    1. Cokorinos E.C., Delmore J., Reyes A.R., Albuquerque B., Kjøbsted R., Jørgensen N.O., Tran J.L., Jatkar A., Cialdea K., Esquejo R.M., et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 2017;25:1147–1159.e10.
    1. Myers R.W., Guan H.P., Ehrhart J., Petrov A., Prahalada S., Tozzo E., Yang X., Kurtz M.M., Trujillo M., Gonzalez Trotter D., et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science. 2017;357:507–511.
    1. Kurth-Kraczek E.J., Hirshman M.F., Goodyear L.J., Winder W.W. 5¢ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. 1999;48:1667–1671.
    1. Esquejo R.M., Salatto C.T., Delmore J., Albuquerque B., Reyes A., Shi Y., Moccia R., Cokorinos E., Peloquin M., Monetti M., et al. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models. EBioMedicine. 2018;31:122–132.
    1. Ooi G.J., Meikle P.J., Huynh K., Earnest A., Roberts S.K., Kemp W., Parker B.L., Brown W., Burton P., Watt M.J. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J. Hepatol. 2021;75:524–535.
    1. Jung Y., Lee M.K., Puri P., Koo B.K., Joo S.K., Jang S.Y., Lee D.H., Jung Y.J., Kim B.G., Lee K.L., et al. Circulating lipidomic alterations in obese and non-obese subjects with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2020;52:1603–1614.
    1. Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K., Contos M.J., Sterling R.K., Fuchs M., Zhou H., et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–1838.
    1. Gorden D.L., Myers D.S., Ivanova P.T., Fahy E., Maurya M.R., Gupta S., Min J., Spann N.J., McDonald J.G., Kelly S.L., et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J. Lipid Res. 2015;56:722–736.
    1. Boden G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011;18:139–143.
    1. Carlier A., Phan F., Szpigel A., Hajduch E., Salem J.E., Gautheron J., Le Goff W., Guérin M., Lachkar F., Ratziu V., et al. Dihydroceramides in triglyceride-enriched VLDL are associated with nonalcoholic fatty liver disease severity in Type 2 diabetes. Cell Rep Med. 2020;1:100154.
    1. Fujii H., Doi H., Ko T., Fukuma T., Kadono T., Asaeda K., Kobayashi R., Nakano T., Doi T., Nakatsugawa Y., et al. Frequently abnormal serum gamma-glutamyl transferase activity is associated with future development of fatty liver: a retrospective cohort study. BMC Gastroenterol. 2020;20:217.
    1. Steneberg P., Lindahl E., Dahl U., Lidh E., Straseviciene J., Backlund F., Kjellkvist E., Berggren E., Lundberg I., Bergqvist I., et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. 2018;3:3.
    1. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001;108:1167–1174.
    1. Kim J., Yang G., Kim Y., Kim J., Ha J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 2016;48:e224.
    1. LaMoia T.E., Shulman G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 2021;42:77–96.
    1. Cariou B., Charbonnel B., Staels B. Thiazolidinediones and PPARγ agonists: time for a reassessment. Trends Endocrinol. Metab. 2012;23:205–215.
    1. Jacques V., Bolze S., Hallakou-Bozec S., et al. Hepatology Communications; 2021. Deuterium-stabilized (R)-pioglitazone (PXL065) is responsible for pioglitazone efficacy in NASH yet exhibits little to no PPARγ activity.
    1. Strawford A., Antelo F., Christiansen M., Hellerstein M.K. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am. J. Physiol. Endocrinol. Metab. 2004;286:E577–E588.
    1. Murphy R.C., Fiedler J., Hevko J. Analysis of nonvolatile lipids by mass spectrometry. Chem. Rev. 2001;101:479–526.
    1. Martínez-Arranz I., Mayo R., Pérez-Cormenzana M., Mincholé I., Salazar L., Alonso C., Mato J.M. Enhancing metabolomics research through data mining. J. Proteomics. 2015;127(Pt B):275–288.

Source: PubMed

3
구독하다