Ciclesonide Inhaler Treatment for Mild-to-Moderate COVID-19: A Randomized, Open-Label, Phase 2 Trial

Joon-Young Song, Jin-Gu Yoon, Yu-Bin Seo, Jacob Lee, Joong-Sik Eom, Jin-Soo Lee, Won-Suk Choi, Eun-Young Lee, Young-Ah Choi, Hak-Jun Hyun, Hye Seong, Ji-Yun Noh, Hee-Jin Cheong, Woo-Joo Kim, Joon-Young Song, Jin-Gu Yoon, Yu-Bin Seo, Jacob Lee, Joong-Sik Eom, Jin-Soo Lee, Won-Suk Choi, Eun-Young Lee, Young-Ah Choi, Hak-Jun Hyun, Hye Seong, Ji-Yun Noh, Hee-Jin Cheong, Woo-Joo Kim

Abstract

Although some intravenous drugs have been used to treat coronavirus disease 2019 (COVID-19), no effective antiviral agents are currently available in the outpatient setting. We aimed to evaluate the efficacy and adverse events of 14-day ciclesonide treatment vs. standard care for patients with mild-to-moderate COVID-19. A randomized, open-label, multicenter clinical trial of ciclesonide inhalers was conducted in patients with mild-to-moderate COVID-19. Patients were enrolled within 3 days of diagnosis or within 7 days from symptom onset and randomly assigned to receive either ciclesonide (320 µg inhalation twice per day for 14 days) or standard care. The primary endpoint was the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) eradication rate on day 14 from study enrollment. Clinical status was assessed once daily, and serial nasopharyngeal viral load was evaluated by quantitative reverse transcription polymerase chain reaction. There were 35 and 26 patients in the ciclesonide and standard care groups, respectively. The SARS-CoV-2 eradication rate at day 14 was significantly higher in the ciclesonide group (p = 0.021). In multivariate analysis, SARS-CoV-2 negative conversion within 14 days was 12 times more likely in the ciclesonide group (95% confidence interval, 1.187-125.240). Additionally, the clinical failure rate (high-flow nasal oxygen therapy or mechanical ventilation) was significantly lower in the ciclesonide group (p = 0.034). In conclusion, ciclesonide inhalation shortened SARS-CoV-2 viral shedding duration, and it may inhibit the progression to acute respiratory failure in patients with mild-to-moderate COVID-19. Clinical Trial Registration NCT04330586.

Keywords: COVID-19; SARS-CoV-2; antiviral agents; ciclesonide; inhalation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study flowchart: randomization and treatment assignment.
Figure 2
Figure 2
Comparison of serial cyclic threshold (Ct) values based on quantitative reverse transcription polymerase chain reaction targeting RdRp gene between ciclesonide and standard care groups. Four patients of ciclesonide group and six patients of standard care group were excluded in the analysis because of clinical failure or early discharge with clinical improvement, respectively.

References

    1. Song J.Y., Yun J.G., Noh J.Y., Cheong H.J., Kim W.J. Covid-19 in South Korea—Challenges of subclinical manifestations. N. Engl. J. Med. 2020;382:1858–1859. doi: 10.1056/NEJMc2001801.
    1. World Health Organization Coronavirus Disease 2019 (COVID-19): Situation Report. [(accessed on 28 November 2020)]; Available online: .
    1. Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S., Shum D., Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020;64 doi: 10.1128/AAC.00819-20.
    1. Chakraborty R., Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem. Pharmacol. 2020;180:114184. doi: 10.1016/j.bcp.2020.114184.
    1. Cavalcanti A.B., Zampieri F.G., Rosa R.G., Azevedo L.C.P., Veiga V.C., Avezum A., Damiani L.P., Marcadenti A., Kawano-Dourado L., Lisboa T., et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. 2020;383:2041–2052. doi: 10.1056/NEJMoa2019014.
    1. Recovery Collaborative Group. Horby P., Mafham M., Linsell L., Bell J.L., Staplin N., Emberson J.R., Wiselka M., Ustianowski A., Elmahi E., et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med. 2020;383:2030–2040. doi: 10.1056/NEJMoa2022926.
    1. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020;382:1787–1799. doi: 10.1056/NEJMoa2001282.
    1. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., et al. Remdesivir for the treatment of Covid-19—Final report. N. Engl. J. Med. 2020;383:1813–1826. doi: 10.1056/NEJMoa2007764.
    1. Matsuyama S., Kawase M., Nao N., Shirato K., Ujike M., Kamitani W., Shimojima M., Fukushi S. The inhaled steroid ciclesonide blocks SARS-CoV-2 RNA Replication by targeting the viral replication-transcription complex in cultured cells. J. Virol. 2020;95 doi: 10.1128/JVI.01648-20.
    1. Iwabuchi K., Yoshie K., Kurakami Y., Takahashi K., Kato Y., Morishima T. Therapeutic potential of ciclesonide inahalation for COVID-19 pneumonia: Report of three cases. J. Infect. Chemother. 2020;26:625–632. doi: 10.1016/j.jiac.2020.04.007.
    1. Mori N., Katayama M., Nukaga S. Triple therapy with hydroxychloroquine, azithromycin, and ciclesonide for COVID-19 pneumonia. J. Microbiol. Immunol. Infect. 2021;54:109–112. doi: 10.1016/j.jmii.2020.09.003.
    1. Deokar K., Agarwal M., Dutt N., Chauhan N., Niwas R., Shadrach B.J., Chawla G. A review of ciclesonide in COVID-19. Still a long way to go. Adv. Respir. Med. 2021;89:79–81. doi: 10.5603/ARM.a2020.0173.
    1. Terada-Hirashima J., Suzuki M., Uemura Y., Hojo M., Mikami A., Sugiura W., Ohmagari N., Sugiyama H. Efficacy and safety of inhaled ciclesonide in treating patients with asymptomatic or mild COVID-19 in the RACCO trial: Protocol for a multicenter, open-label, randomized controlled trial. JMIR Res. Protoc. 2020;9:e23830. doi: 10.2196/23830.
    1. Lee D.K., Fardon T.C., Bates C.E., Haggart K., McFarlane L.C., Lipworth B.J. Airway and systemic effects of hydrofluoroalkane formulations of high-dose ciclesonide and fluticasone in moderate persistent asthma. Chest. 2005;127:851–860. doi: 10.1378/chest.127.3.851.
    1. Kimura H., Kurusu H., Sada M., Kurai D., Murakami K., Kamitani W., Tomita H., Katayama K., Ryo A. Molecular pharmacology of ciclesonide against SARS-CoV-2. J. Allergy Clin. Immunol. 2020;146:330–331. doi: 10.1016/j.jaci.2020.05.029.
    1. Yamamoto E., Taquahashi Y., Kuwagata M., Saito H., Matsushita K., Toyoda T., Sato F., Kitajima S., Ogawa K., Izutsu K.I., et al. Visualizing the spatial localization of ciclesonide and its metabolites in rat lungs after inhalation of 1-µm aerosol of ciclesonide by desorption electrospray ionization-time of flight mass spectrometry imaging. Int. J. Pharm. 2021;595:120241. doi: 10.1016/j.ijpharm.2021.120241.
    1. Jozwiak M., Teboul J.L., Monnet X. Extravascular lung water in critical care: Recent advances and clinical applications. Ann. Intensive Care. 2015;5:38. doi: 10.1186/s13613-015-0081-9.
    1. Berlin D.A., Gulick R.M., Martinez F.J. Severe Covid-19. N. Engl. J. Med. 2020;383:2451–2460. doi: 10.1056/NEJMcp2009575.
    1. Recovery Collaborative Group. Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 2021;384:693–704. doi: 10.1056/NEJMoa2021436.
    1. Ramakrishnan S., Nicolau D.V., Jr., Langford B., Mahdi M., Jeffers H., Mwasuku C., Krassowska K., Fox R., Binnian I., Glover V., et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label, randomised controlled trial. Lancet Respir. Med. 2021 doi: 10.1016/S2213-2600(21)00160-0.
    1. Yoon J.G., Yoon J., Song J.Y., Yoon S.Y., Lim C.S., Seong H., Noh J.Y., Cheong H.J., Kim W.J. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020;35:e195. doi: 10.3346/jkms.2020.35.e195.

Source: PubMed

3
구독하다