Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection

Francisco J Ibáñez, Mónica A Farías, Angello Retamal-Díaz, Janyra A Espinoza, Alexis M Kalergis, Pablo A González, Francisco J Ibáñez, Mónica A Farías, Angello Retamal-Díaz, Janyra A Espinoza, Alexis M Kalergis, Pablo A González

Abstract

Heme oxygenase-1 (HO-1) is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS), as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP) and negatively by tin protoporphirin (SnPP). Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+), carbon monoxide (CO) and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV), influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2) infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP), we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2) recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.

Keywords: antiviral drug; capsid; carbon monoxide; heme oxygenase-1; herpes simplex virus; pharmacological induction.

Figures

Figure 1
Figure 1
HO-1 expression in epithelial cells treated with CoPP or SnPP and infected with HSV. (A,B) Western blot analyses of HO-1 expression in Vero (left) and HeLa cells (right) after treatment with HO-1-modulating drugs and/or infection with HSV-2 at an MOI 1 for 16 h. (C,D) Flow cytometry analyses of HO-1 expression in Vero (left) and HeLa cells (right) after treatment with HO-1-modulating drugs and/or infection with HSV-2 at an MOI 1 (MFI, mean fluorescence intensity). (E,F) Virus plaque formation (PFU, plaque forming units) in Vero (left) and HeLa cells (right) treated with HO-1-modulating drugs and then infected with 150 PFU of HSV-2. Plaque forming units were determined at 18 and 36 h post-infection for Vero and HeLa cells, respectively. Data are means ± SEM of three independent experiments. Representative images are shown for western blots. Two-way ANOVA, and Tukey's multiple comparison test were used for statistical analyses (**p < 0.01, ***p < 0.001).
Figure 2
Figure 2
Pharmacological induction of HO-1 restricts the expression of HSV-encoded genes in epithelial cells. (A,B) Flow cytometry analyses of GFP-derived fluorescence in Vero (left) and HeLa cells (right), respectively infected at MOI 1 with HSV-2 that encodes a non-structural GFP reporter gene under the control of a constitutive promotor, in response to varying concentrations of HO-1-modulating drugs. (C,D) Cell viability was assessed for Vero (left) and HeLa cells (right) for treatment with varying concentrations of HO-1-modulating drugs. (E,F) Western blot analyses for viral proteins gD and VP16 in Vero (left) and HeLa (right) cells at 16 h post-infection with HSV-2 at an MOI 1 after treatment with 60 and 10 μM, respectively of HO-1-modulating drugs. (G,H) Quantification of viral genome copies in Vero (left) and HeLa cells (right) by qPCR at 18 h post-infection at MOI 10. Data are means ± SEM of three independent experiments for experiments (A–F) and two independent experiments for (G,H). Representative images are shown for Western blots. Two-way ANOVA, and Tukey's multiple comparison test were used for statistical analyses (A): statistics is shown for the CoPP treated group vs. SnPP-treated and untreated (*p < 0.05, **p < 0.01, ***p < 0.001).
Figure 3
Figure 3
Pharmacological induction of HO-1 activity does not interfere with virus binding to the cell surface nor capsid entry into the cytoplasm. Western blot analyses for determining virus binding to the surface of (A). Vero cells and (B). HeLa cells. Cells were incubated with varying doses of virus for 5 h at 4°C, washed with saline buffer and then immediately prepared for protein extraction. HSV gD protein expression was assessed to determine the amount of virus bound to the surface of cells. (C,D) Flow cytometry analyses measuring virus-derived GFP fluorescence of capsids internalized into the cytoplasm 2 h post-infection with a MOI of 100 after treatment with CoPP, SnPP, or vehicle in Vero cells (left) and HeLa cells (right). Cells were thoroughly washed with saline buffer and treated with trypsin to remove any surface-bound virus before analysis. Data are means ± SEM of three independent experiments. Representative images are shown for Western blots. Two-way ANOVA, and Tukey's multiple comparison test were used for statistical analyses (n.s., non-significant differences).
Figure 4
Figure 4
Pharmacological induction of HO-1 with CoPP modulates capsid distribution in infected cells and elicits differential cell morphology after treatment after HSV-infection. Representative confocal microscopy images of (A). Vero and (B). HeLa cells treated or not with CoPP and infected with an HSV virus encoding a structural GFP fluorescent capsid (green: GFP-capsid fusion protein). Cell nuclei were stained with Hoescht (blue), and membrane were stained with WGA (red) (C,D). Quantification of the distribution of capsid GFP-fluorescence in treated and infected Vero (left) and HeLa cells (right), respectively relative to the position of the nucleus. An average of fifteen fields and 150–200 cells were analyzed per experiment in a blind manner (E,F). Quantification of total green fluorescence (virus encoded structural GFP fluorescent capsid) in confocal microscopy images of HSV-infected Vero (left) and HeLa cells (right), respectively treated or not with CoPP. TCCF is the integral density of fluorescence of the region of interest minus the equivalent of the cell area*mean fluorescence intensity of the background in the complete z-axis of the analyzed cells. Representative confocal microscopy images at 63X magnification are shown. Data are means ± SEM of two independent experiments. One way ANOVA, Two-way ANOVA, and Tukey's multiple comparison test were used for statistical analyses (**p < 0.01, ***p < 0.001).
Figure 5
Figure 5
Treatment with a carbon monoxide-releasing molecule recapitulates the antiviral effects of CoPP after HSV infection. Quantification of plaque forming units (PFU) after HSV-2 titration over (A). Vero and (B). HeLa cells treated with CORM-2 and inactivated CORM-2 (iCORM2). Virus-encoded GFP fluorescence (non-structural GFP reporter) determined by flow cytometry in (C). Vero and (D). HeLa cells infected with HSV at different MOIs at 20 h post-infection. Data are means ± SEM of three independent experiments. One-way ANOVA, and Tukey's multiple comparison test were used for statistical analyses (*p < 0.05, **p < 0.01, ***p < 0.001).

References

    1. (2001). Extraction and precipitation of DNA. Curr. Protoc. Hum. Genet. Appendix 3:Appendix 3C 10.1002/0471142905.hga03cs00
    1. (2006). RIPA buffer (05-01). Cold Spring Harbor Protoc. 10.1101/pdb.rec10617. [Epub ahead of print].
    1. Abaitua F., Hollinshead M., Bolstad M., Crump C. M., O'Hare P. (2012). A Nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. J. Virol. 86, 8998–9014. 10.1128/JVI.01209-12
    1. Abeyrathna N., Washington K., Bashur C., Liao Y. (2017). Nonmetallic carbon monoxide releasing molecules (CORMs). Org Biomol. Chem. [Epub ahead of print]. 10.1039/c7ob01674c
    1. Akaike T., Maeda H. (2000). Nitric oxide and virus infection. Immunology 101, 300–308. 10.1046/j.1365-2567.2000.00142.x
    1. Almeida A. S., Figueiredo-Pereira C., Vieira H. L. (2015). Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front. Physiol. 6:33. 10.3389/fphys.2015.00033
    1. Boczkowski J., Poderoso J. J., Motterlini R. (2006). CO-metal interaction: vital signaling from a lethal gas. Trends Biochem. Sci. 31, 614–621. 10.1016/j.tibs.2006.09.001
    1. Bonkovsky H. L., Healey J. F., Pohl J. (1990). Purification and characterization of heme oxygenase from chick liver. Comparison of the avian and mammalian enzymes. Eur. J. Biochem. 189, 155–166.
    1. Camhi S. L., Alam J., Otterbein L., Sylvester S. L., Choi A. M. (1995). Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am. J. Respir. Cell Mol. Biol. 13, 387–398 10.1165/ajrcmb.13.4.7546768
    1. Chen X., Qiao H., Liu T., Yang Z., Xu L., Xu Y., et al. . (2012). Inhibition of herpes simplex virus infection by oligomeric stilbenoids through ROS generation. Antiviral Res. 95, 30–36. 10.1016/j.antiviral.2012.05.001
    1. Cheshenko N., Trepanier J. B., Stefanidou M., Buckley N., Gonzalez P., Jacobs W., et al. . (2013). HSV activates Akt to trigger calcium release and promote viral entry: novel candidate target for treatment and suppression. FASEB J. 27, 2584–2599. 10.1096/fj.12-220285
    1. Choi B. M., Pae H. O., Jeong Y. R., Oh G. S., Jun C. D., Kim B. R., et al. . (2004). Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radic. Biol. Med. 36, 858–871 10.1016/j.freeradbiomed.2004.01.004
    1. Clark J. E., Foresti R., Green C. J., Motterlini R. (2000). Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J. 15, 615–619. 10.1042/bj3480615
    1. Croen K. D. (1993). Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest. 91, 2446–2452.
    1. Delboy M. G., Roller D. G., Nicola A. V. (2008). Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J. Virol. 82, 3381–3390. 10.1128/JVI.02296-07
    1. Desmard M., Boczkowski J., Poderoso J., Motterlini R. (2007). Mitochondrial and cellular heme-dependent proteins as targets for the bioactive function of the heme oxygenase/carbon monoxide system. Antioxid. Redox Signal. 9, 2139–2155. 10.1089/ars.2007.1803
    1. Devadas K., Dhawan S. (2006). Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J. Immunol. 176, 4252–4257. 10.4049/jimmunol.176.7.4252
    1. Dioum E. M., Rutter J., Tuckerman J. R., Gonzalez G., Gilles-Gonzalez M. A., McKnight S. L. (2002). NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387. 10.1126/science.1078456
    1. Dodding M. P., Way M. (2011). Coupling viruses to dynein and kinesin-1. EMBO J. 30, 3527–3539. 10.1038/emboj.2011.283
    1. Dolan A., Jamieson F. E., Cunningham C., Barnett B. C., McGeoch D. J. (1998). The genome sequence of herpes simplex virus type 2. J. Virol. 72, 2010–2021.
    1. Eisenstein R. S., Garcia-Mayol D., Pettingell W., Munro H. N. (1991). Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc. Natl. Acad. Sci. U.S.A. 88, 688–692. 10.1073/pnas.88.3.688
    1. Espinoza J. A., Leon M. A., Cespedes P. F., Gomez R. S., Canedo-Marroquin G., Riquelme S. A., et al. . (2017). Heme oxygenase-1 modulates human respiratory syncytial virus replication and lung pathogenesis during infection. Proc. Natl. Acad. Sci. U.S.A. 199, 212–223 10.4049/jimmunol.1601414
    1. Ewing P., Wilke A., Eissner G., Holler E., Andreesen R., Gerbitz A. (2005). Expression of heme oxygenase-1 protects endothelial cells from irradiation-induced apoptosis. Endothelium 12, 113–119 10.1080/10623320500189814
    1. Fillebeen C., Rivas-Estilla A. M., Bisaillon M., Ponka P., Muckenthaler M., Hentze M. W., et al. . (2005). Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus. J. Biol. Chem. 280, 9049–9057. 10.1074/jbc.M412687200
    1. Gueron G., Giudice J., Valacco P., Paez A., Elguero B., Toscani M., et al. . (2014). Heme-oxygenase-1 implications in cell morphology and the adhesive behavior of prostate cancer cells. Oncotarget 5, 4087–4102. 10.18632/oncotarget.1826
    1. Hashiba T., Suzuki M., Nagashima Y., Suzuki S., Inoue S., Tsuburai T., et al. . (2001). Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther. 8, 1499–1507 10.1038/sj.gt.3301540
    1. Hill-Batorski L., Halfmann P., Neumann G., Kawaoka Y. (2013). The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication. J. Virol. 87, 13795–13802 10.1128/JVI.02422-13
    1. Kaczara P., Motterlini R., Rosen G. M., Augustynek B., Bednarczyk P., Szewczyk A., et al. . (2015). Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells, A role for mitoBKCa channels. Biochim. Biophys. Acta 1847, 1297–1309. 10.1016/j.bbabio.2015.07.004
    1. Kapitulnik J. (2004). Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol. Pharmacol. 66, 773–779 10.1124/mol.104.002832
    1. Keyse S. M., Tyrrell R. M. (1987). Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J. Biol. Chem. 262, 14821–14825.
    1. Keyse S. M., Tyrrell R. M. (1989). Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. U.S.A. 86, 99–103. 10.1073/pnas.86.1.99
    1. Kim H. P., Wang X., Galbiati F., Ryter S. W., Choi A. M. (2004). Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB J. 18, 1080–1089 10.1096/fj.03-1391com
    1. Lavitrano M., Smolenski R. T., Musumeci A., Maccherini M., Slominska E., Di Florio E., et al. . (2004). Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J. 18, 1093–1095. 10.1096/fj.03-0996fje
    1. Lee G. E., Murray J. W., Wolkoff A. W., Wilson D. W. (2006). Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J. Virol. 80, 4264–4275. 10.1128/JVI.80.9.4264-4275.2006
    1. Lee W. Y., Chen Y. C., Shih C. M., Lin C. M., Cheng C. H., Chen K. C., et al. . (2014). The induction of heme oxygenase-1 suppresses heat shock protein 90 and the proliferation of human breast cancer cells through its byproduct carbon monoxide. Toxicol. Appl. Pharmacol. 274, 55–62. 10.1016/j.taap.2013.10.027
    1. Lehmann E., El-Tantawy W. H., Ocker M., Bartenschlager R., Lohmann V., Hashemolhosseini S., et al. . (2010). The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology 51, 398–404 10.1002/hep.23339
    1. Lin Q., Weis S., Yang G., Weng Y. H., Helston R., Rish K., et al. . (2007). Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J. Biol. Chem. 282, 20621–20633 10.1074/jbc.M607954200
    1. Liu X. M., Durante Z. E., Peyton K. J., Durante W. (2016). Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction. Free Radic. Biol. Med. 94, 218–229. 10.1016/j.freeradbiomed.2016.03.003
    1. Mackern-Oberti J. P., Obreque J., Mendez G. P., Llanos C., Kalergis A. M. (2015). Carbon monoxide inhibits T cell activation in target organs during systemic lupus erythematosus. Clin. Exp. Immunol. 182, 1–13 10.1111/cei.12657
    1. Maines M. D., Kappas A. (1977). Enzymatic oxidation of cobalt protoporphyrin IX: observations on the mechanism of heme oxygenase action. Biochemistry 16, 419–423. 10.1021/bi00622a012
    1. Matthews J. D., Morgan R., Sleigher C., Frey T. K. (2013). Do viruses require the cytoskeleton? Virol. J. 10:121. 10.1186/1743-422X-10-121
    1. McCloy R. A., Rogers S., Caldon C. E., Lorca T., Castro A., Burgess A. (2014). Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400–1412. 10.4161/cc.28401
    1. Menken M., Waggoner J. G., Berlin N. I. (1966). The influence of bilirubin on oxidative phosphorylation and related reactions in brain and liver mitochondria: effects of protein-binding. J. Neurochem. 13, 1241–1248. 10.1111/j.1471-4159.1966.tb04283.x
    1. Motterlini R., Otterbein L. E. (2010). The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728–743 10.1038/nrd3228
    1. Murphy B. J., Laderoute K. R., Short S. M., Sutherland R. M. (1991). The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells. Br. J. Cancer 64, 69–73. 10.1038/bjc.1991.241
    1. Newcomb W. W., Brown J. C. (2012). Internal catalase protects herpes simplex virus from inactivation by hydrogen peroxide. J. Virol. 86, 11931–11934. 10.1128/JVI.01349-12
    1. Olagnier D., Peri S., Steel C., van Montfoort N., Chiang C., Beljanski V., et al. . (2014). Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog. 10:e1004566 10.1371/journal.ppat.1004566
    1. Peers C., Boyle J. P., Scragg J. L., Dallas M. L., Al-Owais M. M., Hettiarachichi N. T., et al. . (2015). Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br. J. Pharmacol. 172, 1546–1556 10.1111/bph.12760
    1. Petro C. D., Weinrick B., Khajoueinejad N., Burn C., Sellers R., Jacobs W. R., Jr., Herold B. C. (2016). HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates. JCI insigth. 1:e88529. 10.1172/jci.insight.88529
    1. Protzer U., Seyfried S., Quasdorff M., Sass G., Svorcova M., Webb D., et al. . (2007). Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology 133, 1156–1165 10.1053/j.gastro.2007.07.021
    1. Riquelme S. A., Bueno S. M., Kalergis A. M. (2015a). Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility. Immunology 144, 321–332. 10.1111/imm.12375
    1. Riquelme S. A., Pogu J., Anegon I., Bueno S. M., Kalergis A. M. (2015b). Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur. J. Immunol. 45, 3269–3288 10.1002/eji.201545671
    1. Ryter S. W., Alam J., Choi A. M. (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–650 10.1152/physrev.00011.2005
    1. Santangelo R., Mancuso C., Marchetti S., Di Stasio E., Pani G., Fadda G. (2012). Bilirubin: an endogenous molecule with antiviral activity in vitro. Front. Pharmacol. 3:36. 10.3389/fphar.2012.00036
    1. Sardana M. K., Kappas A. (1987). Dual control mechanism for heme oxygenase: tin(IV)-protoporphyrin potently inhibits enzyme activity while markedly increasing content of enzyme protein in liver. Proc. Natl. Acad. Sci. U.S.A. 84, 2464–2468.
    1. Schatzschneider U. (2015). Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs). Br. J. Pharmacol. 172, 1638–1650. 10.1111/bph.12688
    1. Schmidt W. N., Mathahs M. M., Zhu Z. (2012). Heme and HO-1 Inhibition of HCV, HBV, and HIV. Front. Pharmacol. 3:129. 10.3389/fphar.2012.00129
    1. Shan Y., Pepe J., Lu T. H., Elbirt K. K., Lambrecht R. W., Bonkovsky H. L. (2000). Induction of the heme oxygenase-1 gene by metalloporphyrins. Arch. Biochem. Biophys. 380, 219–227 10.1006/abbi.2000.1921
    1. Shibahara S., Muller R. M., Taguchi H. (1987). Transcriptional control of rat heme oxygenase by heat shock. J. Biol. Chem. 262, 12889–12892.
    1. Slebos D. J., Ryter S. W., van der Toorn M., Liu F., Guo F., Baty C. J., et al. . (2007). Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am. J. Respir. Cell Mol. Biol. 36, 409–417 10.1165/rcmb.2006-0214OC
    1. Suazo P. A., Tognarelli E. I., Kalergis A. M., Gonzalez P. A. (2015). Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med. Microbiol. Immunol. 204, 161–176. 10.1007/s00430-014-0358-x
    1. Tardif V., Riquelme S. A., Remy S., Carreno L. J., Cortes C. M., Simon T., et al. . (2013). Carbon monoxide decreases endosome-lysosome fusion and inhibits soluble antigen presentation by dendritic cells to T cells. Eur. J. Immunol. 43, 2832–2844 10.1002/eji.201343600
    1. Tenhunen R., Ross M. E., Marver H. S., Schmid R. (1970). Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 9, 298–303. 10.1021/bi00804a016
    1. Terry C. M., Clikeman J. A., Hoidal J. R., Callahan K. S. (1998). Effect of tumor necrosis factor-α and interleukin-1 α on heme oxygenase-1 expression in human endothelial cells. Am. J. Physiol. 274, H883–H891.
    1. Tseng C. K., Lin C. K., Wu Y. H., Chen Y. H., Chen W. C., Young K. C., et al. . (2016). Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci. Rep. 6:32176. 10.1038/srep32176
    1. Tsui T. Y., Obed A., Siu Y. T., Yet S. F., Prantl L., Schlitt H. J., et al. . (2007). Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock 27, 165–171. 10.1097/01.shk.0000239781.71516.61
    1. Tung W. H., Hsieh H. L., Lee I. T., Yang C. M. (2011). Enterovirus 71 induces integrin beta1/EGFR-Rac1-dependent oxidative stress in SK-N-SH cells: role of HO-1/CO in viral replication. J. Cell. Physiol. 226, 3316–3329 10.1002/jcp.22677
    1. Vile G. F., Basu-Modak S., Waltner C., Tyrrell R. M. (1994). Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 91, 2607–2610. 10.1073/pnas.91.7.2607
    1. Wang K., Kappel J. D., Canders C., Davila W. F., Sayre D., Chavez M., et al. . (2012). A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM. J. Virol. 86, 12891–12902. 10.1128/JVI.01055-12
    1. Wegiel B., Gallo D. J., Raman K. G., Karlsson J. M., Ozanich B., Chin B. Y., et al. . (2010). Nitric oxide-dependent bone marrow progenitor mobilization by carbon monoxide enhances endothelial repair after vascular injury. Circulation 121, 537–548. 10.1161/CIRCULATIONAHA.109.887695
    1. Wolfstein A., Nagel C. H., Radtke K., Dohner K., Allan V. J., Sodeik B. (2006). The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7, 227–237. 10.1111/j.1600-0854.2005.00379.x
    1. Xiao S., Zhang A., Zhang C., Ni H., Gao J., Wang C., et al. . (2014). Heme oxygenase-1 acts as an antiviral factor for porcine reproductive and respiratory syndrome virus infection and over-expression inhibits virus replication in vitro. Antiviral Res. 110, 60–69. 10.1016/j.antiviral.2014.07.011
    1. Yoshida T., Biro P., Cohen T., Muller R. M., Shibahara S. (1988). Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457–461. 10.1111/j.1432-1033.1988.tb13811.x
    1. Zhang A., Zhao L., Li N., Duan H., Liu H., Pu F., et al. . (2017). Carbon monoxide inhibits porcine reproductive and respiratory syndrome virus replication by the cyclic GMP/protein kinase G and NF-kappaB signaling pathway. J. Virol. 91:e01866–16. 10.1128/JVI.01866-16
    1. Zhang C., Pu F., Zhang A., Xu L., Li N., Yan Y., et al. . (2015). Heme oxygenase-1 suppresses bovine viral diarrhoea virus replication in vitro. Sci. Rep. 5:15575 10.1038/srep15575
    1. Zhong M., Zheng K., Chen M., Xiang Y., Jin F., Ma K., et al. . (2014). Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin. PLoS ONE 9:e99425. 10.1371/journal.pone.0099425
    1. Zhu Z., Wilson A. T., Luxon B. A., Brown K. E., Mathahs M. M., Bandyopadhyay S., et al. . (2010). Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity: mechanism for the antiviral effects of heme oxygenase? Hepatology 52, 1897–1905. 10.1002/hep.23921
    1. Zobi F. (2013). CO and CO-releasing molecules in medicinal chemistry. Future Med. Chem. 5, 175–188. 10.4155/fmc.12.196
    1. Zuckerbraun B. S., Billiar T. R., Otterbein S. L., Kim P. K., Liu F., Choi A. M., et al. . (2003). Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J. Exp. Med. 198, 1707–1716. 10.1084/jem.20031003
    1. Zuckerbraun B. S., Chin B. Y., Bilban M., d'Avila J. C., Rao J., Billiar T. R., Otterbein L. E. (2007). Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21, 1099–1106. 10.1096/fj.06-6644com

Source: PubMed

3
구독하다