Heme and HO-1 Inhibition of HCV, HBV, and HIV

Warren N Schmidt, M Meleah Mathahs, Zhaowen Zhu, Warren N Schmidt, M Meleah Mathahs, Zhaowen Zhu

Abstract

Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system inhibit replication of all 3 viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

Keywords: HBV; HCV; HIV; Heme; biliverdin; metalloporphyrins; proteases; viruses.

Figures

Figure 1
Figure 1
Representative porphyrin structures. (A) pyrrole ring, (B) porphyrin ring, (C) protoporphyrin IX, and (D) Heme, iron protoporphyrin IX.
Figure 2
Figure 2
Heme oxygenase and biliverdin reductase enzymes.
Figure 3
Figure 3
Tetrapyrrole inhibition of HCV NS3/4A protease. (A,B) Protease activity was determined fluorometrically (FRET assay) using recombinant NS3/4A enzyme and various concentrations of inhibitors. (C) Endogenous NS3/4A protease activity in microsomes of replicons was measured using the same FRET assay but employing endogenous, partially purified NS3/4A protease from replicon cells (Zhu et al., 2010a). (D) Reciprocal (Lineweaver–Burk) plot of substrate concentration vs. enzyme activity. Recombinant protease activity was determined fluorometrically. Each point is the mean ± SEM of 3–5 determinations per point. Plot of [BV] vs. either 1/Vap or Km/V (not pictured) showed highly significant linearity (r = 0.975 and r = 0.979 respectively, p < 0.005) indicating mixed inhibition of NS3/4A protease by BV (K′i = 1.1  mM and Ki = 0.6 mM, respectively). 0 to the commercial Inhibitor = NS3/4A protease competitive inhibitor, AnaSpec #25346. Biliverdin = >99% Biliverdin IX-α. Bilirubin-mixed isomers (MI) = 93% Bilirubin IX-α, and 6% associated Bilirubin isomers. Bilirubin IX-α = >99% bilirubin IX-α. (With permission Zhu et al., see original manuscript for further details.)
Figure 4
Figure 4
Disappearance of HCV RNA and HCV NS3/4A inhibition with biliverdin, heme, or ZnPP. (A–C) HCV RNA was determined in total RNA extracted from replicon cells incubated with the indicated concentrations of tetrapyrrole for 48 h. Independent determinations of the inhibitory activity of each tetrapyrrole for recombinant HCV NS3/4A was determined by FRET analysis (Zhu et al., 2010a). Results are means ± SEM of six determinations per point. (With permission; Zhu et al., .)
Figure 5
Figure 5
Schematic of HCV NS3/4A protease inhibition of innate immune signaling pathways: TLR3 and RIG1. Double stranded RNA (dsRNA) viruses or viruses with dsRNA intermediate activate innate immune system signaling pathways for type I interferon induction through binding to Pattern Recognition Receptors (PRR). For HCV, PRR are associated with at least two major signaling pathways: TLR3 and RIG1. Upon intracellular binding of dsRNA to associated adapter proteins TRIF and CARDIFF, respectively, signaling is transmitted through complex intermediate steps of recognition, binding, and phosphorylation leading to activation of the transcriptional factors IRF3 and NFκB. The activated nuclear transcription factors bind to type I interferon promoters and induce α/β-interferon transcription. HCV NS3/4A protease is known to cleave both TRIF and CARDIFF adapters thus crippling innate immune antigen recognition and signaling for type I interferon induction. With permission (Bode et al., 2007), see original review for terminology and abbreviations.
Figure 6
Figure 6
Biliverdin and Heme can restore IFN promoter activation and Interferon Stimulated Response Genes (ISRG) after interference of IFN signaling with HCV NS3/4A. (A,B) HEK 293 cells were transfected with dsRNA and vectors containing Type I IFN promoter-luciferase construct and complete NS3/4A sequence plasmid construct or control plasmid. Cells were then incubated with heme (20 μM) or Biliverdin (50 μM) for 48 h. Cellular lysates were prepared and assayed for interferon promoter activation using luciferase assay (Zhu et al., 2010b). Each point is the mean of six determinations (two separate cell culture incubations, and then three replicates for luciferase assay per incubation). (C,D) Parallel experiments showing that heme and BV can restore interferon stimulated response genes (ISRG) after inhibition with NS3/4A protease. HEK 293 cells were transfected with dsRNA with or without HCV NS3/4A plasmid then incubated with heme or BV for same time and concentrations as (A,B) OAS-1 mRNA was measured using Real Time RT-PCR. Each point is the mean of six determinations as described for (A,B) **p < 0.01; *p < 0.05; NS, not significant. (With permission Zhu et al., .)

References

    1. Abdalla M. Y., Britigan B. E., Wen F., Icardi M., McCormick M. L., LaBrecque D. R., Voigt M., Brown K. E., Schmidt W. N. (2004). Down-regulation of heme oxygenase-1 by hepatitis C virus infection in vivo and by the in vitro expression of hepatitis C core protein. J. Infect. Dis. 190, 1109–111810.1086/423488
    1. Abraham N. G., Lavrovsky Y., Schwartzman M. L., Stoltz R. A., Levere R. D., Gerritsen M. E., Shibahara S., Kappas A. (1995). Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial-cells – protective effect against heme and hemoglobin toxicity. Proc. Natl. Acad. Sci. U.S.A. 92, 6798–680210.1073/pnas.92.15.6798
    1. Argyris E. G., Vanderkooi J. M., Venkateswaran P. S., Kay B. K., Paterson Y. (1999). The connection domain is implicated in metalloporphyrin binding and inhibition of HIV reverse transcriptase. J. Biol. Chem. 274, 1549–155610.1074/jbc.274.3.1549
    1. Barresinoussi F., Chermann J. C., Rey F., Nugeyre M. T., Chamaret S., Gruest J., Dauguet C., Axlerblin C., Vezinetbrun F., Rouzioux C., Rozenbaum W., Montagnier L. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune-deficiency syndrome (AIDS). Science 220, 868–87110.1126/science.6189183
    1. Bauer I., Rensing H., Florax A., Ulrich C., Pistorius G., Redl H., Bauer M. (2003). Expression pattern and regulation of heme oxygenase-1 heat shock protein 32 in human liver cells. Shock 20, 116–12210.1097/01.shk.0000075568.93053.fa
    1. Beinker N. K., Voigt M. D., Arendse M., Smit J., Stander I. A., Kirsch R. E. (1996). Threshold effect of liver iron content on hepatic inflammation and fibrosis in hepatitis B and C. J. Hepatol. 25, 633–63810.1016/S0168-8278(96)80231-5
    1. Benzaghou I., Bougie I., Bisaillon M. (2004). Effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase. J. Biol. Chem. 279, 49755–4976110.1074/jbc.M409657200
    1. Bissig K. D., Le T. T., Woods N. B., Verma I. M. (2007). Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc. Natl. Acad. Sci. U.S.A. 104, 20507–2051110.1073/pnas.0710528105
    1. Bissig K. D., Wieland S. F., Tran P., Isogawa M., Le T. T., Chisari F. V., Verma I. M. (2010). Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J. Clin. Invest. 120, 924–93010.1172/JCI40094
    1. Blight K. J., McKeating J. A., Rice C. M. (2002). Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–1301410.1128/JVI.76.24.13001-13014.2002
    1. Bode J. G., Brenndorfer E. D., Haussinger D. (2007). Subversion of innate host antiviral strategies by the hepatitis C virus. Arch. Biochem. Biophys. 462, 254–26510.1016/j.abb.2007.03.033
    1. Bougie I., Charpentier S., Bisaillon M. (2003). Characterization of the metal ion binding properties of the hepatitis C virus RNA polymerase. J. Biol. Chem. 278, 3868–387510.1074/jbc.M209785200
    1. Brik A., Wong C. H. (2003). HIV-1 protease: mechanism and drug discovery. Org. Biomol. Chem. 1, 5–1410.1039/b208248a
    1. Cai Z. H., Zhang C., Chang K. S., Jiang J. Y., Ahn B. C., Wakita T., Liang T. J., Luo G. X. (2005). Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J. Virol. 79, 13963–1397310.1128/JVI.79.22.13963-13973.2005
    1. Casteel M. J., Jayaraj K., Gold A., Ball L. M., Sobsey M. D. (2004). Photoinactivation of hepatitis A virus by synthetic porphyrins. Photochem. Photobiol. 80, 294–30010.1111/j.1751-1097.2004.tb00086.x
    1. Castet V., Fournier C., Soulier A., Brillet R., Coste J., Larrey D., Dhumeaux D., Maurel P., Pawlotsky J. M. (2002). Alpha interferon inhibits hepatitis C virus replication in primary human hepatocytes infected in vitro. J. Virol. 76, 8189–819910.1128/JVI.76.16.8189-8199.2002
    1. Cheng G., Zhong J., Chung J., Chisari F. V. (2007). Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. U.S.A. 104, 9035–904010.1073/pnas.0708506104
    1. Cheng Y., Tsou L. K., Cai J., Aya T., Dutschman G. E., Gullen E. A., Grill S. P., Chen A. P., Lindenbach B. D., Hamilton A. D., Cheng Y. C. (2010). A novel class of meso-tetrakis-porphyrin derivatives exhibits potent activities against hepatitis C virus genotype 1b replicons in vitro. Antimicrob. Agents Chemother. 54, 197–20610.1128/AAC.01206-09
    1. Cruse I., Maines M. D. (1988). Evidence suggesting that the two forms of heme oxygenase are products of different genes. J. Biol. Chem. 263, 3348–3353
    1. Darby S. C., Ewart D. W., Giangrande P. L. F., Spooner R. J. D., Rizza C. R., Dusheiko G. M., Lee C. A., Ludlam C. A., Preston F. E. (1997). Mortality from liver cancer and liver disease in haemophilic men and boys in UK given blood products contaminated with hepatitis C. Lancet 350, 1425–143110.1016/S0140-6736(97)05413-5
    1. De Clercq E. (2007). The design of drugs for HIV and HCV. Nat. Rev. Drug Discov. 6, 1001–101810.1038/nrd2424
    1. de Jong Y. P., Rice C. M., Ploss A. (2010). New horizons for studying human hepatotropic infections. J. Clin. Invest. 120, 650–65310.1172/JCI42338
    1. Debnath A. K., Jiang S., Strick N., Lin K., Haberfield P., Neurath A. R. (1994). 3-Dimensional structure-activity analysis of a series of porphyrin derivatives with anti-HIV-1 activity targeted to the V3 loop of the gp120 envelope glycoprotein of the human-immunodeficiency-virus type-1. J. Med. Chem. 37, 1099–110810.1021/jm00034a007
    1. Debnath A. K., Jiang S. B., Strick N., Lin K., Kahl S. B., Neurath A. R. (1999). Anti-HIV-1 activity of carborane derivatives of porphyrins. Med. Chem. Res. 9, 267–275
    1. Decamp D. L., Babe L. M., Salto R., Lucich J. L., Koo M. S., Kahl S. B., Craik C. S. (1992). Specific-inhibition of HIV-1 protease by boronated porphyrins. J. Med. Chem. 35, 3426–342810.1021/jm00096a020
    1. den Brinker M., Wit F. W. N. M., Wertheim-van Dillen P. M. E., Jurriaans S., Weel J., van Leeuwen R., Pakker N. G., Reiss P., Danner S. A., Weverling G. J., Lange J. M. A. (2000). Hepatitis B and C virus co-infection and the risk for hepatotoxicity of highly active antiretroviral therapy in HIV-1 infection. AIDS 14, 2895–290210.1097/00002030-200012220-00011
    1. Desai T. K., Jamil L. H., Balasubramaniam M., Koff R., Bonkovsky H. L. (2008). Phlebotomy improves therapeutic response to interferon in patients with chronic hepatitis C: a meta-analysis of six prospective randomized controlled trials. Dig. Dis. Sci. 53, 815–82210.1007/s10620-007-9945-7
    1. Devadas K., Dhawan S. (2006). Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J. Immunol. 176, 4252–4257
    1. Di Bisceglie A. M., Bonkovsky H. L., Chopra S., Flamm S., Reddy R. K., Grace N., Killenberg P., Hunt C., Tamburro C., Tavill A. S., Ferguson R., Krawitt E., Banner B., Bacon B. R. (2000). Iron reduction as an adjuvant to interferon therapy in patients with chronic hepatitis C who have previously not responded to interferon: a multicenter, prospective, randomized, controlled trial. Hepatology 32, 135–13810.1053/jhep.2000.8700
    1. Ferrari E., Wright-Minogue J., Fang J. W. S., Baroudy B. M., Lau J. Y. N., Hong Z. (1999). Characterization of soluble hepatitis C virus RNA-dependent RNA polymerase expressed in Escherichia coli. J. Virol. 73, 1649–1654
    1. Fillebeen C., Muckenthaler M., Andricipoulos B., Bisaillon M., Mounir Z., Hentze M. W., Koromilas A. E., Pantopoulos K. (2007). Expression of the subgenomic hepatitis C virus replicon alters iron homeostasis in Huh7 cells. J. Hepatol. 47, 12–2210.1016/j.jhep.2007.01.035
    1. Fillebeen C., Rivas-Estilla A. M., Bisaillon M., Ponka P., Muckenthaler M., Hentze M. W., Koromilas A. E., Pantopoulos K. (2005). Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C Virus. J. Biol. Chem. 280, 9049–905710.1074/jbc.M412687200
    1. Firpi R. J., Nelson D. R. (2007). Current and future hepatitis C therapies. Arch. Med. Res. 38, 678–69010.1016/j.arcmed.2006.09.002
    1. Fontana R. J., Israel J., LeClair P., Banner B. F., Tortorelli K., Grace N., Levine R. A., Fiarman G., Thiim M., Tavill A. S., Bonkovsky H. L. (2000). Iron reduction before and during interferon therapy of chronic hepatitis C: results of a multicenter, randomized, controlled trial. Hepatology 31, 730–73610.1002/hep.510310325
    1. Gibbs P. E., Maines M. D. (2007). Biliverdin inhibits activation of NF-kappaB: reversal of inhibition by human biliverdin reductase. Int. J. Cancer 121, 2567–257410.1002/ijc.22978
    1. Gibbs P. E. M., Miralem T., Maines M. D. (2010). Characterization of the human biliverdin reductase gene structure and regulatory elements: promoter activity is enhanced by hypoxia and suppressed by TNF-alpha-activated NF-kappa B. FASEB J. 24, 3239–325410.1096/fj.09-144592
    1. Gondeau C., Pichard-Garcia L., Maurel P. (2009). Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol. Ther. 124, 1–2210.1016/j.pharmthera.2009.05.010
    1. Gozzelino R., Jeney V., Soares M. P. (2010). Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. 50, 323–35410.1146/annurev.pharmtox.010909.105600
    1. Gray H. B., Winkler J. R. (1996). Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–56110.1146/annurev.bi.65.070196.002541
    1. Guo H. T., Pan X. B., Mao R. C., Zhang X. C., Wang L. J., Lu X. Y., Chang J. H., Guo J. T., Passic S., Krebs F. C., Wigdahl B., Warren T. K., Retterer C. J., Bavari S., Xu X. D., Cuconati A., Block T. M. (2011). Alkylated porphyrins have broad antiviral activity against hepadnaviruses, flaviviruses, filoviruses, and arenaviruses. Antimicrob. Agents Chemother. 55, 478–48610.1128/AAC.00508-11
    1. Guo X., Shin V. Y., Cho C. H. (2001). Modulation of heme oxygenase in tissue injury and its implication in protection against gastrointestinal diseases. Life Sci. 69, 3113–311910.1016/S0024-3205(01)01417-5
    1. Hayashi S., Omata Y., Sakamoto H., Higashimoto Y., Hara T., Sagara Y., Noguchi M. (2004). Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336, 241–25010.1016/j.gene.2004.04.002
    1. Heinemann I. U., Jahn M., Jahn D. (2008). The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474, 238–25110.1016/j.abb.2008.02.015
    1. Hou W., Tian Q., Zheng J., Bonkovsky H. L. (2010). Zinc mesoporphyrin induces rapid proteasomal degradation of hepatitis C nonstructural 5A protein in human hepatoma cells. Gastroenterology 138, 1909–191910.1053/j.gastro.2009.11.001
    1. Hou W. H., Rossi L., Shan Y., Zheng J. Y., Lambrecht R. W., Bonkovsky H. L. (2009). Iron increases HMOX1 and decreases hepatitis C viral expression in HCV-expressing cells. World J. Gastroenterol. 15, 4499–451010.3748/wjg.15.1910
    1. Hou W. H., Shan Y., Zheng J. Y., Larnbrecht R. W., Donohue S. E., Bonkovsky H. L. (2008). Zinc mesoporphyrin induces rapid and marked degradation of the transcription factor Bach1 and up-regulates HO-1. Biochim. Biophys. Acta 1779, 195–20310.1016/j.bbagrm.2008.01.006
    1. Immenschuh S., Ramadori G. (2000). Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem. Pharmacol. 60, 1121–112810.1016/S0006-2952(00)00443-3
    1. Kalliolias G. D., Ivashkiv L. B. (2010). Overview of the biology of type I interferons. Arthritis Res. Ther. 12(Suppl. 1), S1.10.1186/ar2898
    1. Kapitulnik J., Maines M. D. (2009). Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol. Sci. 30, 129–13710.1016/j.tips.2008.12.003
    1. Kato T., Date T., Miyamoto M., Furusaka A., Tokushige K., Mizokami M., Wakita T. (2003). Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125, 1808–181710.1053/j.gastro.2003.09.023
    1. Kayali Z., Ranguelov R., Mitros F., Shufelt C., Elmi F., Rayhill S. C., Schmidt W. N., Brown K. E. (2005). Hemosiderosis is associated with accelerated decompensation and decreased survival in patients with cirrhosis. Liver Int. 25, 41–4810.1111/j.1478-3231.2005.01022.x
    1. Kayali Z., Tan S., Shinkunas L., Voigt M., LaBrecque D. R., Stapleton J. T., Brown K. E., Schmidt W. N. (2007). Risk factors for hepatitis C fibrosis: a prospective study of United States veterans compared with nonveterans. J. Viral Hepat. 14, 11–2110.1111/j.1365-2893.2007.00910.x
    1. Khvalevsky E., Rivkin L., Rachmilewitz J., Galun E., Giladi H. (2007). TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. J. Cell. Biochem. 100, 1301–131210.1002/jcb.21119
    1. Kitamuro T., Takahashi K., Ogawa K., Udono-Fujimori R., Takeda K., Furuyama K., Nakayama M., Sun J. Y., Fujita H., Hida W., Hattori T., Shirato K., Igarashi K., Shibahara S. (2003). Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 278, 9125–913310.1074/jbc.M209939200
    1. Koliaraki V., Kollias G. (2011). A new role for myeloid HO-1 in the innate to adaptive crosstalk and immune homeostasis. Adv. Exp. Med. Biol. 780, 101–11110.1007/978-1-4419-5632-3_9
    1. Koziel M. J., Peters M. G. (2007). Viral hepatitis in HIV infection. N. Engl. J. Med. 356, 1445–145410.1056/NEJMra065142
    1. Labbe R. F. (1992). Clinical utility of zinc protoporphyrin. Clin. Chem. 38, 2167–2168
    1. Lee P. J., Alam J., Wiegand G. W., Choi A. M. K. (1996). Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc. Natl. Acad. Sci. U.S.A. 93, 10393–1039810.1073/pnas.93.20.11035
    1. Lee Y. I., Hwang J. M., Im J. H., Lee Y. I., Kim N. S., Kim D. G., Yu D. Y., Moon H. B., Park S. K. (2004). Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J. Biol. Chem. 279, 15460–1547110.1074/jbc.M400857200
    1. Lehmann E., El-Tantawy W. H., Ocker M., Bartenschlager R., Lohmann V., Hashemolhosseini S., Tiegs G., Sass G. (2010). The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology 51, 398–40410.1002/hep.23339
    1. Lemon S. M., Murphy P. C., Smith A., Zou J. S., Hammon J., Robinson S., Horowitz B. (1994). Removal/neutralization of hepatitis-a virus during manufacture of high-purity, solvent/detergent factor-Viii concentrate. J. Med. Virol. 43, 44–4910.1002/jmv.1890430109
    1. Levere R. D., Gong Y. F., Kappas A., Bucher D. J., Wormser G. P., Abraham N. G. (1991). Heme inhibits human immunodeficiency virus 1 replication in cell cultures and enhances the antiviral effect of zidovudine. Proc. Natl. Acad. Sci. U.S.A. 88, 1756–175910.1073/pnas.88.5.1756
    1. Li K., Chen Z. H., Kato N., Gale M., Lemon S. M. (2005a). Distinct poly (I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes. J. Biol. Chem. 280, 16739–1674710.1074/jbc.M414139200
    1. Li K., Foy E., Ferreon J. C., Nakamura M., Ferreon A. C. M., Ikeda M., Ray S. C., Gale M., Lemon S. M. (2005b). Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. U.S.A. 102, 2992–299710.1073/pnas.0409103102
    1. Lieber C. S. (1997). Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases. Adv. Pharmacol. 38, 601–62810.1016/S1054-3589(08)61001-7
    1. Lin L., Hu J. (2008). Inhibition of hepadnavirus reverse transcriptase-epsilon RNA interaction by porphyrin compounds. J. Virol. 82, 2305–231210.1128/JVI.02147-07
    1. Lindenbach B. D., Rice C. M. (2005). Unravelling hepatitis C virus replication from genome to function. Nature 436, 933–93810.1038/nature04077
    1. Lohmann V., Korner F., Koch J. O., Herian U., Theilmann L., Bartenschlager R. (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–11310.1126/science.285.5424.110
    1. Loo Y. M., Owen D. M., Li K., Erickson A. K., Johnson C. L., Fish P. M., Carney D. S., Wang T., Ishida H., Yoneyama M., Fujita T., Saito T., Lee W. M., Hagedorn C. H., Lau D. T., Weinman S. A., Lemon S. M., Gale M., Jr. (2006). Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc. Natl. Acad. Sci. U.S.A. 103, 6001–600610.1073/pnas.0601523103
    1. Love R. A., Parge H. E., Wickersham J. A., Hostomsky Z., Habuka N., Moomaw E. W., Adachi T., Hostomska Z. (1996). The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87, 331–34210.1016/S0092-8674(00)81350-1
    1. Makino N., Suematsu M., Sugiura Y., Morikawa H., Shiomi S., Goda N., Sano T., Nimura Y., Sugimachi K., Ishimura Y. (2001). Altered expression of heme oxygenase-1 in the livers of patients with portal hypertensive diseases. Hepatology 33, 32–4210.1053/jhep.2001.21161
    1. McCoubrey W. K., Huang T. J., Maines M. D. (1997). Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. J. Biol. Chem. 272, 12568–1257410.1074/jbc.272.19.12568
    1. McDonagh A. F. (2001). Turning green to gold. Nat. Struct. Biol. 8, 198–20010.1038/84915
    1. McPhee F., Caldera P. S., Bemis G. W., McDonagh A. F., Kuntz I. D., Craik C. S. (1996). Bile pigments as HIV-1 protease inhibitors and their effects on HIV-1 viral maturation and infectivity in vitro. Biochem. J. 320, 681–686
    1. Mense S. M., Zhang L. (2006). Herne: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16, 681–69210.1038/sj.cr.7310086
    1. Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp R. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–117210.1038/nature04193
    1. Nogales D., Lightner D. A. (1995). On the structure of bilirubin in solution – C-13 (H-1) heteronuclear Overhauser effect NMR analyses in aqueous buffer and organic-solvents. J. Biol. Chem. 270, 73–7710.1074/jbc.270.1.73
    1. Ogawa K., Sun J., Taketani S., Nakajima O., Nishitani C., Sassa S., Hayashi N., Yamamoto M., Shibahara S., Fujita H., Igarashi K. (2001). Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 20, 2835–284310.1093/emboj/20.11.2835
    1. Ollinger R., Wang H., Yamashita K., Wegiel B., Thomas M., Margreiter R., Bach F. H. (2007). Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid. Redox Signal. 9, 2175–218510.1089/ars.2007.1807
    1. Pietschmann T., Lohmann V., Rutter G., Kurpanek K., Bartenschlager R. (2001). Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J. Virol. 75, 1252–126410.1128/JVI.75.3.1252-1264.2001
    1. Pollack J. R., Ganem D. (1994). Site-specific RNA-binding by a hepatitis-B virus reverse-transcriptase initiates 2 distinct reactions – RNA packaging and DNA-synthesis. J. Virol. 68, 5579–5587
    1. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. (1984). Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224, 497–50010.1126/science.6200935
    1. Protzer U., Seyfried S., Quasdorff M., Sass G., Svorcova M., Webb D., Bohne F., Hosel M., Schirmacher P., Tiegs G. (2007). Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology 133, 1156–116510.1053/j.gastro.2007.07.021
    1. Qadri I., Iwahashi M., Capasso J. M., Hopken M. W., Flores S., Schaack J., Simon F. R. (2004). Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAR and AP-1. Biochem. J. 378, 919–92810.1042/BJ20031587
    1. Qin X. (2007). Inactivation of digestive proteases by deconjugated bilirubin: the possible evolutionary driving force for bilirubin or biliverdin predominance in animals. Gut 56, 1641–164210.1136/gut.2007.132076
    1. Quan C. M., Krajden M., Grigoriew G. A., Salit I. E. (1993). Hepatitis-C virus-infection in patients infected with the human-immunodeficiency-virus. Clin. Infect. Dis. 17, 117–11910.1093/clinids/17.1.117
    1. Ryter S. W., Alam J., Choi A. M. K. (2006). Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583–65010.1152/physrev.00011.2005
    1. Ryter S. W., Tyrrell R. M. (2000). The Heme synthesis and degradation pathways: role in oxidant sensitivity – heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med. 28, 289–30910.1016/S0891-5849(99)00223-3
    1. Seronello S., Sheikh M. Y., Choi J. (2007). Redox regulation of hepatitis C in nonalcoholic and alcoholic liver. Free Radic. Biol. Med. 43, 869–88210.1016/j.freeradbiomed.2007.05.036
    1. Shan Y., Zheng J., Lambrecht R. W., Bonkovsky H. L. (2007). Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology 133, 1166–117410.1053/j.gastro.2007.08.002
    1. Song R., Witvrouw M., Schols D., Robert A., Balzarini J., DeClercq E., Bernadou J., Meunier B. (1997). Anti-HIV activities of anionic metalloporphyrins and related compounds. Antivir. Chem. Chemother. 8, 85–97
    1. Soriano V., Peters M. G., Zeuzem S. (2009). New therapies for hepatitis C virus infection. Clin. Infect. Dis. 48, 313–32010.1086/595848
    1. Staudinger R., Abraham N. G., Levere R. D., Kappas A. (1996). Inhibition of human immunodeficiency virus-1 reverse transcriptase by heme and synthetic heme analogs. Proc. Assoc. Am. Physicians 108, 47–54
    1. Stojiljkovic I., Evavold B. D., Kumar V. (2001). Antimicrobial properties of porphyrins. Expert Opin. Investig. Drugs 10, 309–32010.1517/13543784.10.2.309
    1. Tavis J. E., Perri S., Ganem D. (1994). Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer. J. Virol. 68, 3536–3543
    1. Telfer P., Sabin C., Devereux H., Scott F., Dusheiko G., Lee C. (1994). The progression of HCV-associated liver-disease in a cohort of hemophilic patients. Br. J. Haematol. 87, 555–56110.1111/j.1365-2141.1994.tb08312.x
    1. Tsutsui K., Mueller G. C. (1987). Hemin inhibits virion-associated reverse-transcriptase of murine leukemia-virus. Biochem. Biophys. Res. Commun. 149, 628–63410.1016/0006-291X(87)90414-1
    1. Tzima S., Victoratos P., Kranidioti K., Alexiou M., Kollias G. (2009). Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J. Exp. Med. 206, 1167–117910.1084/jem.20081582
    1. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z. J., Murthy K., Habermann A., Krausslich H. G., Mizokami M., Bartenschlager R., Liang T. J. (2005). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–79610.1038/nm0805-905b
    1. Wang G. H., Zoulim F., Leber E. H., Kitson J., Seeger C. (1994). Role of RNA in enzymatic-activity of the reverse-transcriptase of hepatitis-B viruses. J. Virol. 68, 8437–8442
    1. Washburn M. L., Bility M. T., Zhang L. G., Kovalev G. I., Buntzman A., Frelinger J. A., Barry W., Ploss A., Rice C. M., Su L. S. (2011). A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140, 1334–134410.1053/j.gastro.2011.01.001
    1. Wlodawer A., Miller M., Jaskolski M., Sathyanarayana B. K., Baldwin E., Weber I. T., Selk L. M., Clawson L., Schneider J., Kent S. B. H. (1989). Conserved folding in retroviral proteases – crystal-structure of a synthetic HIV-1 protease. Science 245, 616–62110.1126/science.2548279
    1. Yan Y. W., Li Y., Munshi S., Sardana V., Cole J. L., Sardana M., Steinkuehler C., Tomei L., De Francesco R., Kuo L. C., Chen Z. G. (1998). Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: A 2.2 angstrom resolution structure in a hexagonal crystal form. Protein Sci. 7, 837–84710.1002/pro.5560070402
    1. Yuasa K., Naganuma A., Sato K., Ikeda M., Kato N., Takagi H., Mori M. (2006). Zinc is a negative regulator of hepatitis C virus RNA replication. Liver Int. 26, 1111–111810.1111/j.1478-3231.2006.01352.x
    1. Zhou Y. H., Liu F. L., Yao Z. H., Duo L., Li H., Sun Y., Zheng Y. T. (2011). Comparison of HIV-, HBV-, HCV- and co-infection prevalence between Chinese and Burmese intravenous drug users of the China-Myanmar border region. PLoS ONE 6, e16349.10.1371/journal.pone.0016349
    1. Zhu Z., Wilson A. T., Luxon B. A., Brown K. E., Mathahs M. M., Bandyopadhyay S., McCaffrey A. P., Schmidt W. N. (2010a). Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity: mechanism for the antiviral effects of heme oxygenase? Hepatology 52, 1897–190510.1002/hep.23921
    1. Zhu Z. W., Wilson A. T., Gopalakrishna K., Brown K. E., Luxon B. A., Schmidt W. N. (2010b). Hepatitis C virus core protein enhances telomerase activity in Huh7 cells. J. Med. Virol. 82, 239–24810.1002/jmv.21644
    1. Zhu Z., Wilson A. T., Mathahs M. M., Wen F., Brown K. E., Luxon B. A., Schmidt W. N. (2008). Heme oxygenase-1 suppresses hepatitis C virus replication and increases resistance of hepatocytes to oxidant injury. Hepatology 48, 1430–143910.1002/hep.22491
    1. Zhu Z. W., Mathahs M. M., Schmidt W. N. (2011). Biliverdin and heme restore type I interferon expression in cells expressing HCV NS3/4a protease. Hepatology 54, 541a.10.1016/S0168-8278(11)61368-8
    1. Zoulim F. (2011). Hepatitis B virus resistance to antiviral drugs: where are we going? Liver Int. 31, 111–11610.1111/j.1478-3231.2010.02399.x
    1. Zylberberg H., Pol S. (1996). Reciprocal interactions between human immunodeficiency virus and hepatitis C virus infections. Clin. Infect. Dis. 23, 1117–112510.1093/clinids/23.5.1117

Source: PubMed

3
구독하다