Anosmia in COVID-19: Mechanisms and Significance

Albert Y Han, Laith Mukdad, Jennifer L Long, Ivan A Lopez, Albert Y Han, Laith Mukdad, Jennifer L Long, Ivan A Lopez

Abstract

The global pandemic of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 remains a challenge for prevention due to asymptomatic or paucisymptomatic patients. Anecdotal and preliminary evidence from multiple institutions shows that these patients present with a sudden onset of anosmia without rhinitis. We aim to review the pathophysiology of anosmia related to viral upper respiratory infections and the prognostic implications. Current evidence suggests that SARS-CoV-2-related anosmia may be a new viral syndrome specific to COVID-19 and can be mediated by intranasal inoculation of SARS-CoV-2 into the olfactory neural circuitry. The clinical course of neuroinvasion of SARS-CoV-2 is yet unclear, however an extended follow up of these patients to assess for neurological sequelae including encephalitis, cerebrovascular accidents and long-term neurodegenerative risk may be indicated.

Keywords: COVID-19; anosmia; coronavirus; olfaction; post-viral anosmia.

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

References

    1. Akerlund A, Bende M, Murphy C. 1995. Olfactory threshold and nasal mucosal changes in experimentally induced common cold. Acta Otolaryngol. 115(1):88–92.
    1. Aqrabawi AJ, Kim JC. 2020. Olfactory memory representations are stored in the anterior olfactory nucleus. Nat Commun. 11(1):1246.
    1. Arbour N, Day R, Newcombe J, Talbot PJ. 2000. Neuroinvasion by human respiratory coronaviruses. J Virol. 74(19):8913–8921.
    1. Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MC. 2010. Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol. 20(4):738–750.
    1. Atalar AÇ, Erdal Y, Tekin B, Yıldız M, Akdoğan Ö, Emre U. 2018. Olfactory dysfunction in multiple sclerosis. Mult Scler Relat Disord. 21:92–96.
    1. Attems J, Walker L, Jellinger KA. 2015. Olfaction and aging: a mini-review. Gerontology. 61(6):485–490.
    1. Beites CL, Kawauchi S, Crocker CE, Calof AL. 2005. Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res. 306(2):309–316.
    1. Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P, Lucas JM, Nelson PS, Pöhlmann S, Soilleux EJ. 2012. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One. 7(4):e35876.
    1. Bi Z, Barna M, Komatsu T, Reiss CS. 1995. Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol. 69(10):6466–6472.
    1. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou H, Fletcher R, et al. . 2020. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. bioRxiv. doi: 10.1101/2020.03.25.009084.
    1. Cain WS, Gent JF, Goodspeed RB, Leonard G. 1988. Evaluation of olfactory dysfunction in the Connecticut Chemosensory Clinical Research Center. Laryngoscope. 98(1):83–88.
    1. Carotenuto A, Costabile T, Moccia M, Falco F, Scala MR, Russo CV, Saccà F, De Rosa A, Lanzillo R, Brescia Morra V. 2019. Olfactory function and cognition in relapsing-remitting and secondary-progressive multiple sclerosis. Mult Scler Relat Disord. 27:1–6.
    1. Chen L, Li X, Chen M, Feng Y, Xiong C. 2020. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 116(6):1097–1100.
    1. Chen J, Subbarao K. 2007. The immunobiology of SARS*. Annu Rev Immunol. 25:443–472.
    1. Christian AY, Barna M, Bi Z, Reiss CS. 1996. Host immune response to vesicular stomatitis virus infection of the central nervous system in C57BL/6 mice. Viral Immunol. 9(3):195–205.
    1. Crisafulli U, Xavier AM, Dos Santos FB, Cambiaghi TD, Chang SY, Porcionatto M, Castilho BA, Malnic B, Glezer I. 2018. Topical dexamethasone administration impairs protein synthesis and neuronal regeneration in the olfactory epithelium. Front Mol Neurosci. 11:50.
    1. Diodato A, Ruinart de Brimont M, Yim YS, Derian N, Perrin S, Pouch J, Klatzmann D, Garel S, Choi GB, Fleischmann A. 2016. Molecular signatures of neural connectivity in the olfactory cortex. Nat Commun. 7:12238.
    1. Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 20(5):533–534.
    1. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. 2009. The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat Rev Microbiol. 7(3):226–236.
    1. Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. 2019. Herpes simplex virus type 1 infection of the central nervous system: insights into proposed interrelationships with neurodegenerative disorders. Front Cell Neurosci. 13:46.
    1. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. 2018. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 92(17): e00404–00418.
    1. Durrant DM, Ghosh S, Klein RS. 2016. The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci. 7(4):464–469.
    1. Ebers GC, Sadovnick AD. 1994. The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol. 54(1-2):1–17.
    1. ENT UK 2020. Loss of sense of smell as marker of COVID-19 infection [press release] Available from (accessed March 30, 2020).
    1. Fazakerley JK, Walker R. 2003. Virus demyelination. J Neurovirol. 9(2):148–164.
    1. Fodoulian L, Tuberosa J, Rossier D, Landis BN, Carleton A, Rodriguez I. 2020. SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. bioRxiv: doi: 10.1101/2020.03.31.013268.
    1. Galougahi MK, Ghorbani J, Bakhshayeshkaram M, Naeini AS, Haseli S. 2020. Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: the first report. Acad Radiol. 27(6):892–893.
    1. Gane SB, Kelly C, Hopkins C. 2020. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 58(3):299–301.
    1. Giacomelli A., Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, Rusconi S, Gervasoni C, Ridolfo AL, Rizzardini D, et al. . 2020. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. doi: 10.1093/cid/ciaa330.
    1. Glezer I, Malnic B. 2019. Olfactory receptor function. Handb Clin Neurol. 164:67–78.
    1. Goncalves S, Goldstein BJ. 2016. Pathophysiology of olfactory disorders and potential treatment strategies. Curr Otorhinolaryngol Rep. 4(2):115–121.
    1. Goverdhan MK, Kulkarni AB, Gupta AK, Tupe CD, Rodrigues JJ. 1992. Two-way cross-protection between West Nile and Japanese encephalitis viruses in bonnet macaques. Acta Virol. 36(3):277–283.
    1. Greenberg SB. 2011. Update on rhinovirus and coronavirus infections. Semin Respir Crit Care Med. 32(4):433–446.
    1. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, et al. . 2005. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 202(3):415–424.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203(2):631–637.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. . 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181(2):271–280.
    1. Hong SC, Holbrook EH, Leopold DA, Hummel T. 2012. Distorted olfactory perception: a systematic review. Acta Otolaryngol. 132(Suppl 1):S27–S31.
    1. Hopkins C, Surda P, Kumar N. 2020. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology. 58(3):295–298.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. . 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395(10223):497–506.
    1. Hung EC, Chim SS, Chan PK, Tong YK, Ng EK, Chiu RW, Leung CB, Sung JJ, Tam JS, Lo YM. 2003. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 49(12):2108–2109.
    1. Hwang CS. 2006. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan. 15(1):26–28.
    1. Jacomy H, Talbot PJ. 2003. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology. 315(1):20–33.
    1. Jafek BW, Hartman D, Eller PM, Johnson EW, Strahan RC, Moran DT. 1990. Postviral olfactory dysfunction. Am J Rhinol. 4(3): 91–100.
    1. Kabbani N, Olds JL. 2020. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol. 97(5):351–353.
    1. Landis BN, Vodicka J, Hummel T. 2010. Olfactory dysfunction following herpetic meningoencephalitis. J Neurol. 257(3):439–443.
    1. Lane TE, Paoletti AD, Buchmeier MJ. 1997. Disassociation between the in vitro and in vivo effects of nitric oxide on a neurotropic murine coronavirus. J Virol. 71(3):2202–2210.
    1. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, Dequanter D, Blecic S, El Afia F, Distinguin L, et al. . 2020. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. doi: 10.1007/500405-020.
    1. Leung CT, Coulombe PA, Reed RR. 2007. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci. 10(6):720–726.
    1. Liang F. 2018. Olfactory receptor neuronal dendrites become mostly intra-sustentacularly enwrapped upon maturity. J Anat. 232(4):674–685.
    1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, et al. . 2020. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77(6):1–9.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 395(10229):1033–1034.
    1. Miwa T, Furukawa M, Tsukatani T, Costanzo RM, DiNardo LJ, Reiter ER. 2001. Impact of olfactory impairment on quality of life and disability. Arch Otolaryngol Head Neck Surg. 127(5):497–503.
    1. Moein ST, Hashemian SMR, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. 2020. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. doi: 10.1001/jama.2020.26.
    1. Olsson J, Lövheim H, Honkala E, Karhunen PJ, Elgh F, Kok EH. 2016. HSV presence in brains of individuals without dementia: the TASTY brain series. Dis Model Mech. 9(11):1349–1355.
    1. Park CH, Ishinaka M, Takada A, Kida H, Kimura T, Ochiai K, Umemura T. 2002. The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Arch Virol. 147(7):1425–1436.
    1. Pearce BD, Hobbs MV, McGraw TS, Buchmeier MJ. 1994. Cytokine induction during T-cell-mediated clearance of mouse hepatitis virus from neurons in vivo. J Virol. 68(9):5483–5495.
    1. Perlman S. 1998. Pathogenesis of coronavirus-induced infections. Review of pathological and immunological aspects. Adv Exp Med Biol. 440:503–513.
    1. Perlman S, Dandekar AA. 2005. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 5(12):917–927.
    1. Perlman S, Evans G, Afifi A. 1990. Effect of olfactory bulb ablation on spread of a neurotropic coronavirus into the mouse brain. J Exp Med. 172(4):1127–1132.
    1. Perlman S, Jacobsen G, Afifi A. 1989. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virology. 170(2):556–560.
    1. Reiss CS, Plakhov IV, Komatsu T. 1998. Viral replication in olfactory receptor neurons and entry into the olfactory bulb and brain. Ann NY Acad Sci. 855:751–761.
    1. Schwob JE, Saha S, Youngentob SL, Jubelt B. 2001. Intranasal inoculation with the olfactory bulb line variant of mouse hepatitis virus causes extensive destruction of the olfactory bulb and accelerated turnover of neurons in the olfactory epithelium of mice. Chem Senses. 26(8):937–952.
    1. Seiden AM, Duncan HJ. 2001. The diagnosis of a conductive olfactory loss. Laryngoscope. 111(1):9–14.
    1. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. 2011. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 85(2):873–882.
    1. Sims AC, Baric RS, Yount B, Burkett SE, Collins PL, Pickles RJ. 2005. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol. 79(24):15511–15524.
    1. Solbu TT, Holen T. 2012. Aquaporin pathways and mucin secretion of Bowman’s glands might protect the olfactory mucosa. Chem Senses. 37(1):35–46.
    1. Spinato G, Fabbris C, Polesel J, Cazzador D, Borsetto D, Hopkins C, Boscolo-Rizzo P. 2020. Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection. JAMA. 323(20): 2089–2090.
    1. Steiner I, Kennedy PG, Pachner AR. 2007. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. 6(11):1015–1028.
    1. Stewart JN, Mounir S, Talbot PJ. 1992. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology. 191(1):502–505.
    1. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, et al. . HCA Lung Biological Network 2020. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 26(5):681–687.
    1. Suzuki M, Saito K, Min WP, Vladau C, Toida K, Itoh H, Murakami S. 2007. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 117(2):272–277.
    1. Temmel AF, Quint C, Schickinger-Fischer B, Klimek L, Stoller E, Hummel T. 2002. Characteristics of olfactory disorders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg. 128(6):635–641.
    1. Twomey JA, Barker CM, Robinson G, Howell DA. 1979. Olfactory mucosa in herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 42(11):983–987.
    1. Vaira LA., Salzano G., Deiana G., De Riu G. 2020. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. doi: 10.1002/lary.28692.
    1. van Riel D, Verdijk R, Kuiken T. 2015. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 235(2):277–287.
    1. Wheeler DL, Sariol A, Meyerholz DK, Perlman S. 2018. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 128(3):931–943.
    1. Whitman MC, Greer CA. 2009. Adult neurogenesis and the olfactory system. Prog Neurobiol. 89(2):162–175.
    1. Wu Z, McGoogan JM. 2020. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. doi: 10.1001/jama.2020.26.
    1. Yamagishi M, Fujiwara M, Nakamura H. 1994. Olfactory mucosal findings and clinical course in patients with olfactory disorders following upper respiratory viral infection. Rhinology. 32(3):113–118.
    1. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 357(6377):420–422.
    1. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, et al. . HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 181(5):1016–1035.e19.
    1. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, et al. . 2020. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 382(12):1177–1179.

Source: PubMed

3
구독하다