Tumor necrosis factor production in patients with leprosy

P F Barnes, D Chatterjee, P J Brennan, T H Rea, R L Modlin, P F Barnes, D Chatterjee, P J Brennan, T H Rea, R L Modlin

Abstract

The spectrum of host responses to Mycobacterium leprae provides a model for investigating the role of cytokines in the pathogenesis of mycobacterial disease. Of particular interest is tumor necrosis factor (TNF), a cytokine which may have both antimycobacterial and immunopathologic effects. To evaluate the potential role of TNF in leprosy, we measured TNF production in response to M. leprae and its defined constituents by peripheral blood mononuclear cells from patients across the spectrum of disease. The levels of TNF induced through the stimulation of cells with M. leprae or its dominant "lipopolysaccharide," lipoarabinomannan, were higher in patients with the tuberculoid form of the disease than in those with the lepromatous form. In patients with erythema nodosum leprosum (ENL), a reactional state of lepromatous leprosy, the levels of TNF release by peripheral blood mononuclear cells were higher than in any other form of the disease. Treatment of ENL patients with thalidomide reduced TNF secretion by more than 90%. The mycolylarabinogalactan-peptidoglycan complex of Mycobacterium species, the protein-peptidoglycan complex, and muramyl dipeptide all elicited significant TNF release. Therefore, TNF release appears to be triggered by at least two major cell wall structural constituents of M. leprae, lipoarabinomannan and segments of the cell wall skeleton. The prominent TNF release in patients with the paucibacillary tuberculoid form of the disease compared with that in patients with the multibacillary lepromatous form suggests that this cytokine contributes to a resistant immune response to mycobacterial infection. However, the marked TNF release in patients with ENL indicates that TNF may also mediate immunopathologic effects, such as fever and tissue damage.

References

    1. Clin Exp Immunol. 1976 Dec;26(3):388-96
    1. Clin Exp Immunol. 1976 Jul;25(1):85-94
    1. Infect Immun. 1991 Nov;59(11):4154-60
    1. J Immunol. 1991 Sep 1;147(5):1642-6
    1. J Biol Chem. 1991 May 25;266(15):9652-60
    1. Science. 1991 Oct 11;254(5029):277-9
    1. J Exp Med. 1991 Mar 1;173(3):699-703
    1. Clin Exp Immunol. 1991 Apr;84(1):103-8
    1. J Biol Chem. 1990 Apr 25;265(12):6734-43
    1. Proc Natl Acad Sci U S A. 1990 May;87(9):3348-52
    1. J Immunol. 1990 Jul 1;145(1):149-54
    1. Am J Pathol. 1990 Oct;137(4):749-53
    1. J Immunol. 1990 Dec 15;145(12):4290-7
    1. Clin Exp Immunol. 1990 Apr;80(1):141-8
    1. Infect Immun. 1990 Oct;58(10):3286-92
    1. J Biol Chem. 1990 Oct 25;265(30):18200-6
    1. J Infect Dis. 1990 May;161(5):988-91
    1. Clin Exp Immunol. 1989 May;76(2):240-5
    1. J Immunol. 1989 Oct 15;143(8):2656-62
    1. Cell. 1989 Mar 10;56(5):731-40
    1. J Immunol. 1989 Apr 15;142(8):2864-72
    1. J Immunol. 1989 Apr 15;142(8):2873-8
    1. J Immunol. 1988 May 1;140(9):3006-13
    1. J Infect Dis. 1989 Apr;159(4):787-90
    1. Ann Neurol. 1988 Apr;23(4):339-46
    1. J Immunol. 1988 Oct 1;141(7):2407-12
    1. N Engl J Med. 1987 Feb 12;316(7):379-85
    1. J Immunol Methods. 1986 Dec 4;95(1):99-105
    1. J Immunol. 1987 Feb 1;138(3):775-9
    1. Int J Lepr Other Mycobact Dis. 1971 Apr-Jun;39(2):417-28
    1. Lancet. 1969 Nov 1;2(7627):933-5
    1. Bull World Health Organ. 1974;51(5):451-65
    1. Acta Pathol Microbiol Scand Suppl. 1973;236(0):45-53
    1. Am J Trop Med Hyg. 1973 Jul;22(4):496-502
    1. Lepr Rev. 1969 Apr;40(2):77-81
    1. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255-73
    1. Clin Exp Immunol. 1982 Jun;48(3):633-40
    1. J Immunol Methods. 1983 Dec 16;65(1-2):55-63
    1. Int J Lepr Other Mycobact Dis. 1980 Jun;48(2):120-5
    1. Infect Immun. 1977 Dec;18(3):847-56
    1. Int J Lepr Other Mycobact Dis. 1976 Jan-Jun;44(1-2):267-74
    1. Clin Exp Immunol. 1990 Jun;80(3):395-9

Source: PubMed

3
구독하다