A proof-of-concept study of growth hormone in children with Phelan-McDermid syndrome

S Sethuram, T Levy, J Foss-Feig, D Halpern, S Sandin, P M Siper, H Walker, J D Buxbaum, R Rapaport, A Kolevzon, S Sethuram, T Levy, J Foss-Feig, D Halpern, S Sandin, P M Siper, H Walker, J D Buxbaum, R Rapaport, A Kolevzon

Abstract

Background: Phelan-McDermid syndrome (PMS) is caused by 22q13 deletions including SHANK3 or pathogenic sequence variants in SHANK3 and is among the more common rare genetic findings in autism spectrum disorder (ASD). SHANK3 is critical for synaptic function, and preclinical and clinical studies suggest that insulin-like growth factor-1 (IGF-1) can reverse a range of deficits in PMS. IGF-1 release is stimulated by growth hormone secretion from the anterior pituitary gland, and this study sought to assess the feasibility of increasing IGF-1 levels through recombinant human growth hormone (rhGH) treatment, in addition to establishing safety and exploring efficacy of rhGH in children with PMS.

Methods: rhGH was administered once daily for 12 weeks to six children with PMS using an open-label design. IGF-1 levels, safety, and efficacy assessments were measured every 4 weeks throughout the study.

Results: rhGH administration increased levels of IGF-1 by at least 2 standard deviations and was well tolerated without serious adverse events. rhGH treatment was also associated with clinical improvement in social withdrawal, hyperactivity, and sensory symptoms.

Limitations: Results should be interpreted with caution given the small sample size and lack of a placebo control.

Conclusions: Overall, findings are promising and indicate the need for larger studies with rhGH in PMS. Trial registration NCT04003207. Registered July 1, 2019, https://ichgcp.net/clinical-trials-registry/NCT04003207 .

Keywords: ASD; Autism spectrum disorder; Growth hormone; IGF-1; Insulin-like growth factor-1; PMS; Phelan–McDermid syndrome; Shank3.

Conflict of interest statement

AK receives research support from AMO Pharma and consults to Acadia, Alkermes, Jaguar, Neuren, GW Pharma, and Ovid Therapeutics. JDB has a shared patent with Mount Sinai for IGF-1 in Phelan–McDermid syndrome. No other authors have competing interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Domains of clinical improvement. Lower ABC scores indicate improved behavior, and higher SSP scores indicate improved behavior

References

    1. Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q133 deletion syndrome. Am J Hum Genet. 2001;69(2):261–268. doi: 10.1086/321293.
    1. Wilson HL, Wong AC, Shaw SR, Tse WY, Stapleton GA, Phelan MC, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet. 2003;40(8):575–584. doi: 10.1136/jmg.40.8.575.
    1. Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid BM, Baroncini A, et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet. 2006;43(10):822–828. doi: 10.1136/jmg.2005.038604.
    1. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39(1):25–27. doi: 10.1038/ng1933.
    1. Soorya L, Kolevzon A, Zweifach J, Lim T, Dobry Y, Schwartz L, et al. Prospective investigation of autism and genotype–phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4(1):18. doi: 10.1186/2040-2392-4-18.
    1. De Rubeis S, Siper PM, Durkin A, Weissman J, Muratet F, Halpern D, et al. Delineation of the genetic and clinical spectrum of Phelan–McDermid syndrome caused by SHANK3 point mutations. Mol Autism. 2018;9:31. doi: 10.1186/s13229-018-0205-9.
    1. Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013;4(1):17. doi: 10.1186/2040-2392-4-17.
    1. Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006;326(2):409–422. doi: 10.1007/s00441-006-0274-5.
    1. Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism. 2013;4(1):9. doi: 10.1186/2040-2392-4-9.
    1. Shcheglovitov A, Shcheglovitova O, Yazawa M, Portmann T, Shu R, Sebastiano V, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503(7475):267–271. doi: 10.1038/nature12618.
    1. Kolevzon A, Bush L, Wang AT, Halpern D, Frank Y, Grodberg D, et al. A pilot controlled trial of insulin-like growth factor-1 in children with Phelan–McDermid syndrome. Mol Autism. 2014;5(1):54. doi: 10.1186/2040-2392-5-54.
    1. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–539. doi: 10.1016/j.cell.2010.10.016.
    1. Khwaja OS, Ho E, Barnes KV, O'Leary HM, Pereira LM, Finkelstein Y, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci USA. 2014;111(12):4596–4601. doi: 10.1073/pnas.1311141111.
    1. Castro J, Garcia RI, Kwok S, Banerjee A, Petravicz J, Woodson J, et al. Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proc Natl Acad Sci USA. 2014;111(27):9941–9946. doi: 10.1073/pnas.1311685111.
    1. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, et al. Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA. 2009;106(6):2029–2034. doi: 10.1073/pnas.0812394106.
    1. Pini G, Congiu L, Benincasa A, DiMarco P, Bigoni S, Dyer AH, et al. Illness severity, social and cognitive ability, and EEG analysis of ten patients with Rett syndrome treated with mecasermin (recombinant human IGF-1) Autism Res Treat. 2016;2016:5073078.
    1. Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci USA. 2004;101(26):9833–9838. doi: 10.1073/pnas.0400337101.
    1. O'Kusky JR, Ye P, D'Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate Gyrus during postnatal development. J Neurosci. 2000;20(22):8435–8442. doi: 10.1523/JNEUROSCI.20-22-08435.2000.
    1. Costales J, Kolevzon A. The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci Biobehav Rev. 2016;63:207–222. doi: 10.1016/j.neubiorev.2016.01.001.
    1. Jorge AA, Grimberg A, Dattani MT, Baron J. Disorders of childhood growth. Sperling pediatric endocrinology. Elsevier; 2021. pp. 299–356.
    1. Xie RJ, Li TX, Sun C, Cheng C, Zhao J, Xu H, et al. Correction to: a case report of Phelan–McDermid syndrome: preliminary results of the treatment with growth hormone therapy. Ital J Pediatr. 2021;47(1):89. doi: 10.1186/s13052-021-01038-z.
    1. Aman MG, Singh NN, Stewart AW, Field CJ. Psychometric characteristics of the aberrant behavior checklist. Am J Ment Defic. 1985;89:492–502.
    1. Lam KS, Aman MG. The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. J Autism Dev Disord. 2007;37(5):855–866. doi: 10.1007/s10803-006-0213-z.
    1. Dunn W. Sensory profile. Psychological Corporation; 1999.
    1. Guy W, ECDEU Assessment Manual for PR, Rockville M. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, NIMH Psychopharmacology Research Branch, Division of Extramural Research Programs. 1976.

Source: PubMed

3
구독하다