Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT

Lesley Wiart, Rhonda J Rosychuk, F Virginia Wright, Lesley Wiart, Rhonda J Rosychuk, F Virginia Wright

Abstract

Background: Robot assisted gait training (RAGT) is considered to be a promising approach for improving gait-related gross motor function of children and youth with cerebral palsy. However, RAGT has yet to be empirically demonstrated to be effective. This knowledge gap is particularly salient given the strong interest in this intensive therapy, the high cost of the technology, and the requirement for specialized rehabilitation centre resources.

Methods: This is a research protocol describing a prospective, multi-centre, concurrent mixed methods study comprised of a randomized controlled trial (RCT) and an interpretive descriptive qualitative design. It is a mixed methods study designed to determine the relative effectiveness of three physical therapy treatment conditions (i.e., RAGT, a functional physical therapy program conducted over-ground (fPT), and RAGT + fPT) on gait related motor skills of ambulatory children with cerebral palsy. Children with cerebral palsy aged 5-18 years who are ambulatory (Gross Motor Function Classification System Levels II and III) will be randomly allocated to one of four treatment conditions: 1) RAGT, 2) fPT, 3) RAGT and fPT combined, or 4) a maintenance therapy only control group. The qualitative component will explicate child and parent experiences with the interventions, provide insight into the values that underlie their therapy goals, and assist with interpretation of the results of the RCT.

Discussion: n/a.

Trial registration: NCT02391324 Registered March 12, 2015.

Keywords: Cerebral palsy; Motor skills; Physical therapy; Robot assisted gait training.

Figures

Fig. 1
Fig. 1
Consort flow chart

References

    1. Oskoui M, Coutinho F, Dykeman J, Jette N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–519. doi: 10.1111/dmcn.12080.
    1. Himmelmann K, Uvebrant P. Function and neuroimaging in cerebral palsy: a population-based study. Dev Med Child Neurol. 2011;53(6):516–521. doi: 10.1111/j.1469-8749.2011.03932.x.
    1. Bottos M, Feliciangeli A, Sciuto L, Gericke C, Vianello A. Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol. 2001;43(8):516–528. doi: 10.1017/S0012162201000950.
    1. Willerslev-Olsen M, Lorentzen J, Nielsen JB. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy. NeuroRehabilitation. 2014;35(4):643–655.
    1. Boyce AM, Tosi LL, Paul SM. Bisphosphonate treatment for children with disabling conditions. PM R. 2014;6(5):427–436. doi: 10.1016/j.pmrj.2013.10.009.
    1. Maltais DB, Pierrynowski MR, Galea VA, Bar-Or O. Physical activity level is associated with the O2 cost of walking in cerebral palsy. Med Sci Sports Exerc. 2005;37(3):347–353. doi: 10.1249/01.MSS.0000155437.45937.82.
    1. Rodby-Bousquet E, Hägglund G. Use of manual and powered wheelchair in children with cerebral palsy: a cross-sectional study. BMC Pediatr. 2010;10(16):59. doi: 10.1186/1471-2431-10-59.
    1. Gibson BE, Teachman G. Critical approaches in physical therapy research: investigating the symbolic value of walking. Physiother Theory Pract. 2012;28(6):474–484. doi: 10.3109/09593985.2012.676936.
    1. Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26(4):308–317. doi: 10.1177/1545968312439687.
    1. Dayan E, Cohen L. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–454. doi: 10.1016/j.neuron.2011.10.008.
    1. Thorpe DE, Valvano J. The effects of knowledge of performance and cognitive strategies on motor skill learning in children with cerebral palsy. Pediatr Phys Ther. 2002;14(1):2–15. doi: 10.1097/00001577-200214010-00002.
    1. Zwicker JG, Mayson TA. Effectiveness of treadmill training in children with motor impairments: An overview of systematic reviews. Pediatr Phys Ther. 2010;22(4):361–377. doi: 10.1097/PEP.0b013e3181f92e54.
    1. Henry ABA. Wii-habilitation and robotic exoskeletons: technology in physiotherapy. R Coll Surg Irel Stud Med J. 2010;3:70–74.
    1. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48:387–416. doi: 10.1682/JRRD.2010.04.0055.
    1. Mayr A, Kofler M, Quirbach E, Matzak H, Fröhlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–314. doi: 10.1177/1545968307300697.
    1. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser F, Colombo G, Knecht B, Heinen F. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49(12):900–906. doi: 10.1111/j.1469-8749.2007.00900.x.
    1. Brütsch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lünenburger L, Riener R, Jäncke L, Meyer-Heim A. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7(22):15. doi: 10.1186/1743-0003-7-15.
    1. Borggraefe I, Kiwull L, Schaefer J, Koerte I, Blaschek A, Meyer-Heim A, Heinen F. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46(2):125–131.
    1. Johnston TE, Watson KE, Ross SA, Gates PE, Gaughan JP, Lauer RT, Tucker CA, Engsberg JR. Effects of a supported speed treadmill training exercise program on impairment and function for children with cerebral palsy. Dev Med Child Neurol. 2011;53(8):742–750. doi: 10.1111/j.1469-8749.2011.03990.x.
    1. Borggraefe I, Schaefer J, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berweck S, Heinen F, Meyer-Heim A. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502. doi: 10.1016/j.ejpn.2010.01.002.
    1. Russel DJ, Rosenbaum PL, Avery L, Lane M. Gross motor function measure (GMFM-66 and GMFM--88) user’s manual: clinics in developmental medicine. London: Mac Keith Press; 2002.
    1. Meyer-Heim A, Ammann-Reiffer C, Schmartz A. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94(8):615–620. doi: 10.1136/adc.2008.145458.
    1. Druzbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, Durmala J, Czernuszenko A, Bonikowski M, Sobota G. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J Rehabil Med. 2013;45(4):358–363. doi: 10.2340/16501977-1114.
    1. Wiart L. Exploring mobility options for children with physical disabilities: a focus on powered mobility. Phys Occup Ther Pediatr. 2011;31(3):16–18. doi: 10.3109/01942638.2011.532452.
    1. Tashakkori A, Teddlie C. Sage handbook of mixed methods research: integrating quantitative and qualitative approaches in the social and behavioural sciences. Thousand Oaks: Sage; 2010.
    1. Thorne S. Interpretive description. 1. Walnut Creek: Left Coast Press; 2008.
    1. Christiansen AS, Lange C. Intermittent versus continuous physiotherapy in children with cerebral palsy. Dev Med Child Neurol. 2008;50(4):290–293. doi: 10.1111/j.1469-8749.2008.02036.x.
    1. Oeffinger D, Bagley A, Rogers S, Gorton G, Kryscio R, Abel M, Damiano D, Barnes D, Tylkowski C. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Dev Med Child Neurol. 2008;50(12):918–925. doi: 10.1111/j.1469-8749.2008.03150.x.
    1. Hintz J. NCSS and PASS. Number cruncher statistical systems. 2001.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Arpino C, Vescio M, De Luca A, Curattolo P. Efficacy of intensive physiotherapy in children with cerebral palsy: a meta-analysis. Int J Rehabil Res. 2010;33(2):165–171. doi: 10.1097/MRR.0b013e328332f617.
    1. Levac D, Rivard L, Missiuna C. Defining the active ingredients of interactive computer play interventions for children with neuromotor impairments: a scoping review. Res Dev Disabil. 2012;33(1):214–223. doi: 10.1016/j.ridd.2011.09.007.
    1. Kamath T, Pfeifer M, Banerjee P, Hunter T, Ito J, Salbach N, Wright V, Levac D. Reliability of the Motor Learning Strategy Rating Instrument (MLSRI) for children and youth with Acquired Brain Injury (ABI) Phys Occup Ther Pediatr. 2012;32(3):288–305. doi: 10.3109/01942638.2012.672551.
    1. Van Den Broeck C, De Cat J, Molenaers G, Franki I, Himpens E, Severijns D, Desloovere K. The effect of individually defined physiotherapy in children with cerebral palsy (CP) Eur J Paediatr Neurol. 2010;14(6):519–525. doi: 10.1016/j.ejpn.2010.03.004.
    1. Pin T, Dyke P, Chan M. The effectiveness of passive stretching in children with cerebral palsy. Dev Med Child Neurol. 2006;48(10):855–862. doi: 10.1017/S0012162206001836.
    1. Scianni A, Butler JM, Ada L, Teixeira-Salmela LF. Muscle strengthening is not effective in children and adolescents with cerebral palsy: a systematic review. Aust J Physiother. 2009;55(2):81–87. doi: 10.1016/S0004-9514(09)70037-6.
    1. Wiart L, Darrah J, Kembhavi G. Stretching with children with cerebral palsy: what do we know and where are we going? Pediatr Phys Ther. 2008;20(2):173–178. doi: 10.1097/PEP.0b013e3181728a8c.
    1. Wilson A, Kavanaugh A, Moher R, McInroy M, Gupta N, Salbach NE, Wright V. Development and pilot testing of the Challenge Module: a proposed adjunct to the gross motor function measure for high functioning children with cerebral palsy. Phys Occup Ther Pediatr. 2011;31(2):135–149. doi: 10.3109/01942638.2010.489543.
    1. Maher CA, Williams MT, Olds TS. The six-minute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31(2):185–188. doi: 10.1097/MRR.0b013e32830150f9.
    1. McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 min walk test for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):744–748. doi: 10.1017/S0012162205001568.
    1. Wright V, Redekop S, Koo I, Pidsadny M, Fehlings D. Reliability of a new observational gait scale for evaluation of outcomes related to botulinum toxin type-A injections in children with cerebral palsy [abstract] Dev Med Child Neurol. 2008;50:32. doi: 10.1111/j.1469-8749.2008.02037.x.
    1. Law M, Baptiste S, Carswell A, McColl M, Polatajko H, Pollock N. Canadian Occupational Therapy Performance Measure (COPM): 5th Edition ed. Ottawa: CAOT Publications ACE; 2014.
    1. King G, McDougall J, Palisano R, Gritzan J, Tucker M. Goal attainment scaling: its use in evaluating pediatric therapy programs. Phys Occup Ther Pediatr. 1999;15(2):31–52.
    1. Franjoine M, Gunther J, Taylor M. Pediatric balance scale: a modified version of the Berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr Phys Ther. 2003;15(2):114–128. doi: 10.1097/01.PEP.0000068117.48023.18.
    1. Powell L, Myers A. The Activities-specific Balance Confidence Scale (ABC) J Gerontol A Biol Sci Med Sci. 1995;50(1):M28–34. doi: 10.1093/gerona/50A.1.M28.
    1. Wright FV, Rosenbaum P, Fehlings D, Mesterman R, Breuer U, Kim M. The Quality Function Measure: Reliability and discriminant validity of a new measure of quality of gross motor movement in ambulatory children with cerebral palsy. Dev Med Child Neurol. 2014;56(8):770–8.
    1. Haley SM, Coster WJ, Dumas HM, Fragala-Pinkham MA, Kramer J, Ni P, Tian F, Kao YC, Moed R, Ludlow LH. Accuracy and precision of the Pediatric Evaluation of Disability Inventory computer-adaptive tests (PEDI-CAT) Dev Med Child Neurol. 2011;53(12):1100–1106. doi: 10.1111/j.1469-8749.2011.04107.x.
    1. Foley L, Prapavessis H, Maddison R, Burke S, McGowan E, Gillanders L. Predicting physical activity intention and behavior in school-aged children. Pediatr Exerc Sci. 2008;20(3):342–356.
    1. Coster W, Law M, Bedell G, Khetani M, Cousins M, Teplicky R. Development of the Participation and Environment Measure for Children and Youth (PEM-CY): conceptual basis. Disabil Rehabil. 2012;34(3):238–246. doi: 10.3109/09638288.2011.603017.
    1. Ravens-Sieberer U, Auquier P, Erhart M, Gosch A, Rajmil L, Bruil J, Power M, Duer W, Cloetta B, Czemy L, Mazur J, Czimbalmos A, Tountas Y, Hagguist C, Kilroe J, European KG. The KIDSCREEN-27 quality of life measure for children and adolescents: psychometric results from a cross-cultural survey in 13 European countries. Qual Life Res. 2007;16(8):1347–1356. doi: 10.1007/s11136-007-9240-2.
    1. Greenspoon PJ, Saklofske DH. Validity and reliability of the multidimensional students’ life satisfaction scale with Canadian children. J Psychoeduc Assess. 1997;15(2):138–155. doi: 10.1177/073428299701500204.
    1. R CT . R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2013.
    1. Hesse-Biber S. Weaving a multimethodology and mixed methods praxis into randomized control trials to enhance credibility. Qual Inq. 2012;18(10):876–889. doi: 10.1177/1077800412456964.
    1. Wiart L. How can qualitative research contribute to the expanding knowledge base in pediatric physical therapy? Phys Ther Rev. 2012;17(6):425–429.
    1. Glogowska M, Campbell R, Peters TJ, Roulstone S, Enderby P. A multimethod approach to the evaluation of community preschool speech and language therapy provision. Child Care Health Dev. 2002;28(6):513–521. doi: 10.1046/j.1365-2214.2002.00297.x.
    1. Hall JN. Pragmatism, evidence, and mixed methods evaluation. N Dir Eval. 2013;2013(138):15–26. doi: 10.1002/ev.20054.
    1. Frost N, Nolas SM. The contribution of pluralistic qualitative approaches to mixed methods evaluations. N Dir Eval. 2013;2013(138):75–84. doi: 10.1002/ev.20059.
    1. Christ TW. Scientific-based research and randomized controlled trials, the “gold” standard? Alternative paradigms and mixed methodologies. Qual Inq. 2014;20(1):72. doi: 10.1177/1077800413508523.
    1. Thorne S, Kirkham SR, MacDonald-Emes J. Interpretive description: a noncategorical qualitative alternative for developing nursing knowledge. Res Nurs Health. 1997;20(2):169–177. doi: 10.1002/(SICI)1098-240X(199704)20:2<169::AID-NUR9>;2-I.
    1. Wiart L. Goal setting in pediatric rehabilitation. In: Siegert R, Levack W, editors. Rehabilitation goal setting: theory, practice and evidence. Florida: CRC Press; 2015. pp. 291–304.
    1. Gibson BE, Teachman G, Wright V, Fehlings D, McKeever P. Children’s and parent’s beliefs regarding the value of walking: rehabilitation implications for children with cerebral palsy. Child Care Health Dev. 2012;38(1):61–69. doi: 10.1111/j.1365-2214.2011.01271.x.
    1. Irwin LG, Johnson J. Interviewing young children: explicating our practices and dilemmas. Qual Health Res. 2005;15(6):821–831. doi: 10.1177/1049732304273862.
    1. Wiart L, Darrah J, Hollis V, Cook A, May L. Mothers’ perceptions of their children’s use of powered mobility. Phys Occup Ther Pediatr. 2004;24(4):3–21. doi: 10.1300/J006v24n04_02.
    1. Wiart L, Ray L, Darrah J, Magill-Evans J. Parents’ perspectives on occupational therapy and physical therapy goals for children with cerebral palsy. Disabil Rehabil. 2010;32(3):248–258. doi: 10.3109/09638280903095890.
    1. Shikako-Thomas K, Lach L, Majnemer A, Nimigon J, Cameron K, Shevell M. Quality of life from the perspective of adolescents with cerebral palsy: “I just think I’m a normal kid, I just happen to have a disability”. Qual Life Res. 2009:18(7)1–8.
    1. Docherty S, Sandelowski M. Focus on qualitative methods: interviewing children. Res Nurs Health. 1999;22(2):177–185. doi: 10.1002/(SICI)1098-240X(199904)22:2<177::AID-NUR9>;2-H.
    1. Danby S, Ewing L, Thorpe KJ. The novice researcher: interviewing young children. Qual Enq. 2011;17(1):74–84. doi: 10.1177/1077800410389754.
    1. Knafl KA, Webster DC. Managing and analyzing qualitative data. A description of tasks, techniques, and materials. West J Nurs Res. 1988;10(2):195–218. doi: 10.1177/019394598801000207.
    1. Corbin J. Qualitative data analysis for grounded theory. In: Chenitz WC, Swanson JM, editors. From practice to grounded theory. Don Mills: Addison-Wesley Publishing Company; 1986. pp. 91–101.
    1. Anonymous . NVivo N4 classic software. Victoria: GRS International; 2000.
    1. Flick U. An introduction to qualitative research. London: Sage; 2002.
    1. Glaser BG, Strauss AL. The discovery of grounded theory. Chicago: Aldine; 1967.
    1. Creswell J. Qualitative inquiry and research design: choosing among five approaches. Thousand Oaks: Sage Publications; 2007.
    1. Fonseca ST, Holt KG, Fetters L, Saltzman E. Dynamic resources used in ambulation by children with spastic hemiplegic cerebral palsy: Relationship to kinematics, energetics, and asymmetries. Phys Ther. 2004;84(4):344–354.
    1. Leiter V. “Nobody’s just normal, you know”: the social creation of developmental disability. Soc Sci Med. 2007;65(8):1630–1641. doi: 10.1016/j.socscimed.2007.06.006.

Source: PubMed

3
구독하다