Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

James H Hull, Les Ansley, Oliver J Price, John W Dickinson, Matteo Bonini, James H Hull, Les Ansley, Oliver J Price, John W Dickinson, Matteo Bonini

Abstract

In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the 'gold standard'. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a 'gold standard' test for EIB.

Figures

Fig. 1
Fig. 1
Eucapnic voluntary hyperpnea protocol and test recommendations. EVH eucapnic voluntary hyperpnea, FEV1 forced expiratory volume in 1 s, MVV maximum voluntary ventilation
Fig. 2
Fig. 2
Photograph depicting the eucapnic voluntary hyperpnea challenge set-up
Fig. 3
Fig. 3
Degree of bronchoconstriction after a eucapnic voluntary hyperpnea challenge in relation to the FEV1 % fall compared with baseline and the ventilation rate maintained during the test FEV1 forced expiratory volume in 1 s, VE minute ventilation

References

    1. Weiler JM, Anderson SD, Randolph C, et al. Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction: a practice parameter. Ann Allergy Asthma Immunol. 2010;105:S1–S47. doi: 10.1016/j.anai.2010.09.021.
    1. Boulet LP, O’Byrne PM. Asthma and exercise-induced bronchoconstriction in athletes. N Engl J Med. 2015;372(7):641–648. doi: 10.1056/NEJMra1407552.
    1. Price OJ, Ansley L, Menzies-Gow A, et al. Airway dysfunction in elite athletes: an occupational lung disease? Allergy. 2013;68(11):1343–1352. doi: 10.1111/all.12265.
    1. Price OJ, Hull JH, Backer V, et al. The impact of exercise-induced bronchoconstriction on athletic performance: a systematic review. Sports Med. 2014;44(12):1749–1761. doi: 10.1007/s40279-014-0238-y.
    1. Ansley L, Kippelen P, Dickinson J, et al. Misdiagnosis of exercise-induced bronchoconstriction in professional soccer players. Allergy. 2012;67(3):390–395. doi: 10.1111/j.1398-9995.2011.02762.x.
    1. Dickinson JW, Whyte GP, McConnell AK, et al. Impact of changes in the IOC-MC asthma criteria: a British perspective. Thorax. 2005;60(8):629–632. doi: 10.1136/thx.2004.037499.
    1. Rundell KW, Im J, Mayers LB, et al. Self-reported symptoms and exercise-induced asthma in the elite athlete. Med Sci Sports Exerc. 2001;33(2):208–213. doi: 10.1097/00005768-200102000-00006.
    1. Lund TK, Pedersen L, Anderson SD, et al. Are asthma-like symptoms in elite athletes associated with classical features of asthma? Br J Sports Med. 2009;43(14):1131–1135. doi: 10.1136/bjsm.2008.054924.
    1. Bonini M, Lapucci G, Petrelli G, et al. Predictive value of allergy and pulmonary function tests for the diagnosis of asthma in elite athletes. Allergy. 2007;62(10):1166–1170. doi: 10.1111/j.1398-9995.2007.01503.x.
    1. Parsons JP, Hallstrand TS, Mastronarde JG, et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am J Respir Crit Care Med. 2013;187(9):1016–1027. doi: 10.1164/rccm.201303-0437ST.
    1. Crapo RO, Casaburi R, Coates AL, et al. Guidelines for methacholine and exercise challenge testing—1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 2000;161(1):309–329. doi: 10.1164/ajrccm.161.1.ats11-99.
    1. Jones RS, Godfrey S, Silverman M, et al. Exercise asthma. Lancet. 1972;1(7749):533. doi: 10.1016/S0140-6736(72)90195-X.
    1. Dryden DM, Spooner CH, Stickland MK, et al. Exercise-induced bronchoconstriction and asthma. Evid Rep Technol Assess (Full Rep). 2010;189:1–154.
    1. Rundell KW, Anderson SD, Spiering BA, et al. Field exercise vs laboratory eucapnic voluntary hyperventilation to identify airway hyperresponsiveness in elite cold weather athletes. Chest. 2004;125(3):909–915. doi: 10.1378/chest.125.3.909.
    1. Anderson SD, Lambert S, Brannan JD, et al. Laboratory protocol for exercise asthma to evaluate salbutamol given by two devices. Med Sci Sports Exerc. 2001;33:893–900. doi: 10.1097/00005768-200106000-00007.
    1. Carlsen KH, Engh G, Mørk M. Exercise induced bronchoconstriction depends on exercise load. Respir Med. 2000;94:750–755. doi: 10.1053/rmed.2000.0809.
    1. Marketos SG, Ballas CN. Bronchial asthma in the medical literature of Greek antiquity. J Asthma. 1982;19(4):263–269. doi: 10.3109/02770908209104771.
    1. Millar JS, Nair N, Jr, Unkles RD, et al. Cold air and ventilator function. Br J Dis Chest. 1965;59:23–27. doi: 10.1016/S0007-0971(65)80032-8.
    1. Strauss RH, McFadden ER, Jr, Ingram RH, Jr, et al. Enhancement of exercise-induced asthma by cold air. N Engl J Med. 1977;297(14):743–747. doi: 10.1056/NEJM197710062971402.
    1. Anderson SD, Argyros GJ, Magnussen H, et al. Provocation by eucapnic voluntary hyperpnoea to identify exercise induced bronchoconstriction. Br J Sports Med. 2001;35(5):344–347. doi: 10.1136/bjsm.35.5.344.
    1. Rosenthal RR. Simplified eucapnic voluntary hyperventilation challenge. J Allergy Clin Immunol. 1984;73(5 Pt 2):676–679. doi: 10.1016/0091-6749(84)90304-X.
    1. Eliasson AH, Phillips YY, Rajagopal KR, et al. Sensitivity and specificity of bronchial provocation testing: an evaluation of four techniques in exercise-induced bronchospasm. Chest. 1992;102(2):347–355. doi: 10.1378/chest.102.2.347.
    1. Dickinson J, McConnell A, Whyte G. Diagnosis of exercise-induced bronchoconstriction: eucapnic voluntary hyperpnoea challenges identify previously undiagnosed elite athletes with exercise-induced bronchoconstriction. Br J Sports Med. 2011;45(14):1126–1131. doi: 10.1136/bjsm.2010.072520.
    1. Hull JH, Ansley L, Garrod R, et al. Exercise-induced bronchoconstriction in athletes: should we screen? Med Sci Sports Exerc. 2007;39(12):2117–2124. doi: 10.1249/mss.0b013e3181578db2.
    1. Anderson SD, Brusasco V, Haahtela T, et al. Criteria for diagnosis of asthma, EIB and AHR for athletes: lessons from the Olympic Games. Eur Respir Mon. 2005;33:48–66. doi: 10.1183/1025448x.00033006.
    1. Fitch KD, Sue-Chu M, Anderson SD, et al. Asthma and the elite athlete: summary of the International Olympic Committee’s consensus conference, Lausanne, Switzerland, January 22–24, 2008. J Allergy Clin Immunol. 2008;122(2):254–260. doi: 10.1016/j.jaci.2008.07.003.
    1. Dickinson JW, Whyte GP, McConnell AK, et al. Screening elite winter athletes for exercise induced asthma: a comparison of three challenge methods. Br J Sports Med. 2006;40(2):179–182. doi: 10.1136/bjsm.2005.022764.
    1. Dickinson J, Molphy J, Chester N, et al. The ergogenic effect of long-term use of high dose salbutamol. Clin J Sport Med. 2014;24(6):474–481. doi: 10.1097/JSM.0000000000000076.
    1. Brannan JD, Koskela H, Anderson SD. Monitoring asthma therapy using indirect bronchial provocation tests. Clin Respir J. 2007;1(1):3–15. doi: 10.1111/j.1752-699X.2007.00004.x.
    1. O’Cain CF, Hensley MJ, McFadden ER, Jr, et al. Pattern and mechanism of airway response to hypocapnia in normal subjects. J Appl Physiol Respir Environ Exerc Physiol. 1979;47(1):8–12.
    1. Phillips YY, Jaeger JJ, Laube BL, et al. Eucapnic voluntary hyperventilation of compressed gas mixture: a simple system for bronchial challenge by respiratory heat loss. Am Rev Respir Dis. 1985;131(1):31–35.
    1. Argyros GJ, Roach JM, Hurwitz KM, et al. Eucapnic voluntary hyperventilation as a bronchoprovocation technique: development of a standarized dosing schedule in asthmatics. Chest. 1996;109(6):1520–1524. doi: 10.1378/chest.109.6.1520.
    1. Busse WW. The precipitation of asthma by upper respiratory infections. Chest. 1985;87(1 Suppl):44S–48S. doi: 10.1378/chest.87.1.44S.
    1. Duffy P, Phillips YY. Caffeine consumption decreases the response to bronchoprovocation challenge with dry gas hyperventilation. Chest. 1991;99:1374–1377. doi: 10.1378/chest.99.6.1374.
    1. Larsson J, Anderson SD, Dahlén SE, et al. Refractoriness to exercise challenge: a review of the mechanisms old and new. Immunol Allergy Clin North Am. 2013;33(3):329–345. doi: 10.1016/j.iac.2013.02.004.
    1. Gandevia B, Hugh-Jones P. Terminology for measurements of ventilatory capacity; a report to the thoracic society. Thorax. 1957;12(4):290–293. doi: 10.1136/thx.12.4.290.
    1. Stadelmann K, Stensrud T, Carlsen KH. Respiratory symptoms and bronchial responsiveness in competitive swimmers. Med Sci Sports Exerc. 2011;43(3):375–381. doi: 10.1249/MSS.0b013e3181f1c0b1.
    1. Spiering BA, Judelson DA, Rundell KW. An evaluation of standardizing target ventilation for eucapnic voluntary hyperventilation using FEV1. J Asthma. 2004;41(7):745–749. doi: 10.1081/JAS-200028004.
    1. Molphy J, Dickinson J, Hu J, et al. Prevalence of bronchoconstriction induced by eucapnic voluntary hyperpnoea in recreationally active individuals. J Asthma. 2014;51(1):44–50. doi: 10.3109/02770903.2013.838256.
    1. Holzer K, Brukner P. Screening of athletes for exercise-induced bronchoconstriction. Clin J Sport Med. 2004;14(3):134–138. doi: 10.1097/00042752-200405000-00005.
    1. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. Hurwitz KM, Argyros GJ, Roach JM, et al. Interpretation of eucapnic voluntary hyperventilation in the diagnosis of asthma. Chest. 1995;108(5):1240–1245. doi: 10.1378/chest.108.5.1240.
    1. Brannan JD, Porsbjerg C, Anderson SD. Inhaled mannitol as a test for bronchial hyper-responsiveness. Expert Rev Respir Med. 2009;3(5):457–468. doi: 10.1586/ers.09.38.
    1. Brummel NE, Mastronarde JG, Rittinger D, et al. The clinical utility of eucapnic voluntary hyperventilation testing for the diagnosis of exercise-induced bronchospasm. J Asthma. 2009;46(7):683–686. doi: 10.1080/02770900902972178.
    1. Cockcroft D, Davis B. Direct and indirect challenges in the clinical assessment of asthma. Ann Allergy Asthma Immunol. 2009;103(5):363–369. doi: 10.1016/S1081-1206(10)60353-5.
    1. Todaro A. Exercise-induced bronchodilatation in asthmatic athletes. J Sports Med Phys Fitness. 1996;36(1):60–66.
    1. Carlsen KH, Engh G, Mørk M. Exercise-induced bronchoconstriction depends on exercise load. Respir Med. 2000;94(8):750–755. doi: 10.1053/rmed.2000.0809.
    1. Williams NC, Johnson MA, Hunter KA, et al. Reproducibility of the bronchoconstrictive response to eucapnic voluntary hyperpnoea. Respir Med. 2015;109(10):1262–1267. doi: 10.1016/j.rmed.2015.08.006.
    1. Stadelmann K, Stensrud T, Carlsen KH. Respiratory symptoms and bronchial responsiveness in competitive swimmers. Med Sci Sports Exerc. 2011;43:375–381. doi: 10.1249/MSS.0b013e3181f1c0b1.
    1. Price OJ, Ansley L, Hull JH. Diagnosing exercise-induced bronchoconstriction with eucapnic voluntary hyperpnoea: is one test enough? J Allergy Clin Immunol Pract. 2015;3(2):243–249. doi: 10.1016/j.jaip.2014.10.012.
    1. Dickinson JW, Whyte GP, McConnell AK, et al. Mid-expiratory flow versus FEV1 measurements in the diagnosis of exercise induced asthma in elite athletes. Thorax. 2006;61(2):111–114. doi: 10.1136/thx.2005.046615.
    1. Evans TM, Rundell KW, Beck KC, et al. Impulse oscillometry is sensitive to bronchoconstriction after eucapnic voluntary hyperventilation or exercise. J Asthma. 2006;43(1):49–55. doi: 10.1080/02770900500448555.
    1. Price OJ, Bikov A, Ansley L, et al. The role of impulse oscillometry in detecting airway dysfunction in athletes. J Asthma. 2015. [Epub ahead of print].
    1. Couillard S, Bougault V, Turmel J, et al. Perception of bronchoconstriction following methacholine and eucapnic voluntary hyperpnoea challenges in elite athletes. Chest. 2014;145(4):794–802. doi: 10.1378/chest.13-1413.
    1. Simpson AJ, Romer LM, Kippelen P. Self-reported symptoms after induced and inhibited bronchoconstriction in athletes. Med Sci Sports Exerc. 2015. [Epub ahead of print].
    1. Holzer K, Anderson SD, Douglass J. Exercise in elite summer athletes: challenges for diagnosis. J Allergy Clin Immunol. 2002;110(3):374–380. doi: 10.1067/mai.2002.127784.
    1. Stickland MK, Rowe BH, Spooner CH, et al. Accuracy of eucapnic hyperpnoea or mannitol to diagnose exercise-induced bronchoconstriction: a systematic review. Ann Allergy Asthma Immunol. 2011;107(3):229–34.e8.
    1. Sue-Chu M, Brannan JD, Anderson SD, et al. Airway hyperresponsiveness to methacholine, adenosine 5-monophosphate, mannitol, eucapnic voluntary hyperpnoea and field exercise challenge in elite cross-country skiers. Br J Sports Med. 2010;44(11):827–832. doi: 10.1136/bjsm.2009.071043.
    1. Holzer K, Anderson SD, Chan HK, et al. Mannitol as a challenge test to identify exercise-induced bronchoconstriction in elite athletes. Am J Respir Crit Care Med. 2003;167(4):534–537. doi: 10.1164/rccm.200208-916OC.
    1. Kippelen P, Tufvesson E, Ali L, et al. Urinary CC16 after challenge with dry air hyperpnoea and mannitol in recreational summer athletes. Respir Med. 2013;107(12):1837–1844. doi: 10.1016/j.rmed.2013.09.020.
    1. Osthoff M, Michel F, Strupler M, et al. Bronchial hyperresponsiveness testing in athletes of the Swiss Paralympic team. BMC Sports Sci Med Rehabil. 2013;5(1):7. doi: 10.1186/2052-1847-5-7.
    1. Simpson AJ, Tufvesson E, Anderson SD, et al. Effect of terbutaline on hyperpnoea-induced bronchoconstriction and urinary club cell protein 16 in athletes. J Appl Physiol (1985). 2013;115(10):1450–1456. doi: 10.1152/japplphysiol.00716.2013.
    1. Kippelen P, Larsson J, Anderson SD, et al. Acute effects of beclomethasone on hyperpnoea-induced bronchoconstriction. Med Sci Sports Exerc. 2010;42(2):273–280. doi: 10.1249/MSS.0b013e3181b541b1.
    1. Kippelen P, Larsson J, Anderson SD, et al. Effect of sodium cromoglycate on mast cell mediators during hyperpnoea in athletes. Med Sci Sports Exerc. 2010;42(10):1853–1860. doi: 10.1249/MSS.0b013e3181da4f7d.
    1. Rundell KW, Spiering BA, Baumann JM, et al. Effects of montelukast on airway narrowing from eucapnic voluntary hyperventilation and cold air exercise. Br J Sports Med. 2005;39(4):232–236. doi: 10.1136/bjsm.2004.014282.
    1. Tecklenburg-Lund S, Mickleborough TD, Turner LA, et al. Randomized controlled trial of fish oil and montelukast and their combination on airway inflammation and hyperpnoea-induced bronchoconstriction. PLoS One. 2010;5(10):e13487. doi: 10.1371/journal.pone.0013487.
    1. Mickleborough TD, Vaughn CL, Shei RJ, et al. Marine lipid fraction PCSO-524 (lyprinol/omega XL) of the New Zealand green lipped mussel attenuates hyperpnoea-induced bronchoconstriction in asthma. Respir Med. 2013;107(8):1152–1163. doi: 10.1016/j.rmed.2013.04.010.
    1. Baumann JM, Rundell KW, Evans TM, et al. Effects of cysteine donor supplementation on exercise-induced bronchoconstriction. Med Sci Sports Exerc. 2005;37(9):1468–1473. doi: 10.1249/01.mss.0000177479.57468.15.
    1. Rudd P. In search of the gold standard for compliance measurement. Arch Intern Med. 1979;139(6):627–628. doi: 10.1001/archinte.1979.03630430009004.
    1. Bougault V, Turmel J, Levesque B, et al. The respiratory health of swimmers. Sports Med. 2009;39(4):295–312. doi: 10.2165/00007256-200939040-00003.
    1. Bougault V, Turmel J, Boulet LP. Bronchial challenges and respiratory symptoms in elite swimmers and winter sport athletes. Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest. 2010;138(2 Suppl):31S–37S.
    1. Pedersen L, Lund TK, Barnes PJ, et al. Airway responsiveness and inflammation in adolescent elite swimmers. J Allergy Clin Immunol. 2008;122(2):322–7, 327.e1.
    1. Castricum A, Holzer K, Brukner P, et al. The role of the bronchial provocation challenge tests in the diagnosis of exercise-induced bronchoconstriction in elite swimmers. Br J Sports Med. 2010;44(10):736–740. doi: 10.1136/bjsm.2008.051169.
    1. Lazarinis N, Jørgensen L, Ekström T, et al. Combination of budesonide/formoterol on demand improves asthma control by reducing exercise-induced bronchoconstriction. Thorax. 2014;69(2):130–136. doi: 10.1136/thoraxjnl-2013-203557.
    1. Parsons JP, Kaeding C, Phillips G, et al. Prevalence of exercise-induced bronchospasm in a cohort of varsity college athletes. Med Sci Sports Exerc. 2007;39(9):1487–1492. doi: 10.1249/mss.0b013e3180986e45.
    1. Pedersen L, Winther S, Backer V, et al. Airway responses to eucapnic hyperpnoea, exercise, and methacholine in elite swimmers. Med Sci Sports Exerc. 2008;40(9):1567–1572. doi: 10.1249/MSS.0b013e31875719a.
    1. Parsons JP, Baran CP, Phillips G, et al. Airway inflammation in exercise-induced bronchospasm occurring in athletes without asthma. J Asthma. 2008;45(5):363–367. doi: 10.1080/02770900801966172.
    1. Bolger C, Tufvesson E, Sue-Chu M, et al. Hyperpnoea-induced bronchoconstriction and urinary CC16 levels in athletes. Med Sci Sports Exerc. 2011;43(7):1207–1213. doi: 10.1249/MSS.0b013e31820750d8.
    1. Koch S, MacInnis MJ, Sporer BC, et al. Inhaled salbutamol does not affect athletic performance in asthmatic and non-asthmatic cyclists. Br J Sports Med. 2015;49(1):51–55. doi: 10.1136/bjsports-2013-092706.

Source: PubMed

3
구독하다