Treatment with L-citrulline in patients with post-polio syndrome: study protocol for a single-center, randomised, placebo-controlled, double-blind trial

Simone Schmidt, Vanya Gocheva, Thomas Zumbrunn, Daniela Rubino-Nacht, Ulrike Bonati, Dirk Fischer, Patricia Hafner, Simone Schmidt, Vanya Gocheva, Thomas Zumbrunn, Daniela Rubino-Nacht, Ulrike Bonati, Dirk Fischer, Patricia Hafner

Abstract

Background: Post-polio syndrome (PPS) is a condition that affects polio survivors years after recovery from an initial acute infection by the Poliomyelitis virus. Most often, patients who suffered from polio start to experience gradual new weakening in muscles, a gradual decrease in the size of muscles (muscle atrophy) and fatigue years after the acute illness. L-citrulline is known to change muscular metabolism synthesis by raising nitric oxide (NO) levels and increasing protein synthesis. This investigator-initiated, randomised, placebo-controlled, double-blind, trial aims to demonstrate that L-citrulline positively influences muscle function and increases muscular energy production in patients with PPS.

Methods/design: Thirty ambulant PPS patients will be recruited in Switzerland. Patients will be randomly allocated to one of the two arms of the study (placebo:verum 1:1). After a 24-week run-in phase to observe natural disease history and progression, participants will be treated either with L-citrulline or placebo for 24 weeks. The primary endpoint is change in the 6-min Walking Distance Test. Secondary endpoints will include motor function measure, quantitative muscle force, quantitative muscle magnetic resonance imaging and magnetic resonance spectroscopy and serum biomarker laboratory analysis DISCUSSION: The aim of this phase IIa trial is to determine if treatment with L-citrulline shows a positive effect on clinical function and paraclinical biomarkers in PPS. If treatment with L-citrulline shows positive effects, this might represent a cost-efficient symptomatic therapy for PPS patients.

Trial registration: ClinicalTrial.gov, ID: NCT02801071 . Registered on 6 June 2016.

Keywords: Clinical trial; L-citrulline; Post-polio syndrome; Quantitative MRI.

Figures

Fig. 1
Fig. 1
Flow chart showing the study design
Fig. 2
Fig. 2
Planned visiting and examination schedule *will be used as baseline values. Vital signs include: blood pressure, heart rate, weight at every visit; height only at screening visit. Motor Function Measurement (MFM) scale, 6-min Walking Distance Test (6MWD), quantitative motor tests (QMT), and screening will be used as baseline values. Full blood count: erythrocytes, reticulocytes, leucocytes, platelets, haemoglobin, haematocrit. GOT, GPT, creatinine, electrolytes (Na+, K+, Ca2+), urea, creatine kinase (CK), glycosylated haemoglobin (HbA1c), cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, calculated glomerular filtration rate (GFR). Oxidised DNA (8-hydroxy-2’-deoxyguanosine: 8OHDG), carbonylated proteins (4-Hydroxynonenal (4-HNE)), mitochondrial proteins (citratsynthase, cytochrome C oxidase subunit 1, succinate dehydrogenase subunit A), nitrotyrosine, cGMP. Woman of child-bearing potential. SIPP – Self-reported Impairments in Persons with late effects of Polio, IBM-FRS – Inclusion Body Myositis Functional Rating Scale, WHOQOL-BREF – The WHO Quality of Life – BREF Questionnaire
Fig. 3
Fig. 3
Randomisation placebo:verum 1:1. Association of sample size (N) and the mean relative improvement of the verum group in the 6-min Walking Distance Test at follow-up (θ), assuming no improvement in the placebo group, for a randomisation ratio of 1:1 into the placebo and verum groups, respectively. Curves are smoothed for illustration purposes only

References

    1. Howard RS. Poliomyelitis and the postpolio syndrome. BMJ. 2005;330(7503):1314–8. doi: 10.1136/bmj.330.7503.1314.
    1. WHO. Poliomyelitis [Internet]. WHO. Available from: . [cited 28 Apr 2016].
    1. Trojan DA, Cashman NR. Post-poliomyelitis syndrome. Muscle Nerve. 2005;31(1):6–19. doi: 10.1002/mus.20259.
    1. Bosch X. Post-polio syndrome recognised by European Parliament. Lancet Neurol. 2004;3(1):4. doi: 10.1016/S1474-4422(03)00633-1.
    1. Ragonese P, Fierro B, Salemi G, Randisi G, Buffa D, D’Amelio M, et al. Prevalence and risk factors of post-polio syndrome in a cohort of polio survivors. J Neurol Sci. 2005;236(1–2):31–5. doi: 10.1016/j.jns.2005.04.012.
    1. Dalakas MC. Pathogenetic mechanisms of post-polio syndrome: morphological, electrophysiological, virological, and immunological correlations. Ann N Y Acad Sci. 1995;753(1):167–85. doi: 10.1111/j.1749-6632.1995.tb27543.x.
    1. Sandberg A, Stålberg E. Changes in macro electromyography over time in patients with a history of polio: a comparison of 2 muscles. Arch Phys Med Rehabil. 2004;85(7):1174–82. doi: 10.1016/j.apmr.2003.08.101.
    1. Koopman FS, Beelen A, Gilhus NE, de Visser, M, Nollet F. Treatment for postpolio syndrome. The Cochrane Library. 2015.
    1. Levillain O. Expression and function of arginine-producing and consuming-enzymes in the kidney. Amino Acids. 2011;42(4):1237–52. doi: 10.1007/s00726-011-0897-z.
    1. Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol. 1981;241(6):E473–80.
    1. El-Hattab AW, Hsu JW, Emrick LT, Wong L-JC, Craigen WJ, Jahoor F, et al. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab. 2012;105(4):607–14. doi: 10.1016/j.ymgme.2012.01.016.
    1. Osowska S, Duchemann T, Walrand S, Paillard A, Boirie Y, Cynober L, et al. Citrulline modulates muscle protein metabolism in old malnourished rats. Am J Physiol Endocrinol Metab. 2006;291(3):E582–6. doi: 10.1152/ajpendo.00398.2005.
    1. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299(5608):896–9. doi: 10.1126/science.1079368.
    1. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007;75(2):283–90. doi: 10.1016/j.cardiores.2007.03.022.
    1. Moinard C, Nicolis I, Neveux N, Darquy S, Bénazeth S, Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. Br J Nutr. 2008;99(04):855–62. doi: 10.1017/S0007114507841110.
    1. Andersen LK, Knak KL, Witting N, Vissing J. Two- and 6-Minute Walk Tests assess walking capability equally in neuromuscular diseases. Neurology. 2016;86(5):442–5. doi: 10.1212/WNL.0000000000002332.
    1. Montes J, McDermott MP, Martens WB, Dunaway S, Glanzman AM, Riley S, et al. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology. 2010;74(10):833–8. doi: 10.1212/WNL.0b013e3181d3e308.
    1. MFM, Motor Function Measure and scale—neuromuscular pathology and myopathy test [Internet]. [cited 28 Apr 2016]. Available from: .
    1. Fischmann A, Hafner P, Gloor M, Schmid M, Klein A, Pohlman U, et al. Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol. 2012;260(4):969–74. doi: 10.1007/s00415-012-6733-x.
    1. Fischmann A, Hafner P, Fasler S, Gloor M, Bieri O, Studler U, et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol. 2012;259(8):1648–54. doi: 10.1007/s00415-011-6393-2.
    1. Sinclair CDJ, Morrow JM, Yousry TA, Reilly MM, Hanna MG, Golay X, et al. P86 Inter-scan reproducibility of quantitative neuromuscular MRI. Neuromuscul Disord. 2010;20(Suppl 1):S28.
    1. Fischmann A, Gloor M, Fasler S, Haas T, Wetzel RR, Bieri O, et al. Muscular involvement assessed by MRI correlates to motor function measurement values in oculopharyngeal muscular dystrophy. J Neurol. 2011;258(7):1333–40. doi: 10.1007/s00415-011-5937-9.
    1. Wokke BH, Bos C, Reijnierse M, van Rijswijk CS, Eggers H, Webb A, et al. Comparison of Dixon and T1-weighted MR methods to assess the degree of fat infiltration in Duchenne muscular dystrophy patients. J Magn Reson Imaging. 2013;38(3):619–24. doi: 10.1002/jmri.23998.
    1. Bonati U, Hafner P, Schädelin S, Schmid M, Naduvilekoot Devasia A, Schroeder J, et al. Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul Disord. 2015;25(9):679–85. doi: 10.1016/j.nmd.2015.05.006.
    1. Brogårdh C, Lexell J, Lundgren-Nilsson Å. Construct validity of a new rating scale for self-reported impairments in persons with late effects of polio. PM&R. 2013;5(3):176–81. doi: 10.1016/j.pmrj.2012.07.007.
    1. Brogårdh C, Lexell J. Test-retest reliability of the Self-Reported Impairments in Persons With Late Effects of Polio (SIPP) Rating Scale. PM&R. 2016;8(5):399–404. doi: 10.1016/j.pmrj.2015.09.023.
    1. Jackson CE, Barohn RJ, Gronseth G, Pandya S, Herbelin L. Inclusion body myositis functional rating scale: a reliable and valid measure of disease severity. Muscle Nerve. 2008;37(4):473–6. doi: 10.1002/mus.20958.
    1. Soares JF, Wu CFJ. Some restricted randomization rules in sequential designs. Commun Stat Theory Methods. 1983;12(17):2017–34. doi: 10.1080/03610928308828586.
    1. Bérard C, Payan C, Hodgkinson I, Fermanian J, Group TMCS. A motor function measure scale for neuromuscular diseases. Construction and validation study. Neuromuscul Disord. 2005;15(7):463–70. doi: 10.1016/j.nmd.2005.03.004.
    1. Finanger EL, Russman B, Forbes SC, Rooney WD, Walter GA, Vandenborne K. Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23(1):1–10. doi: 10.1016/j.pmr.2011.11.004.
    1. Kinali M, Arechavala-Gomeza V, Cirak S, Glover A, Guglieri M, Feng L, et al. Muscle histology vs MRI in Duchenne muscular dystrophy. Neurology. 2011;76(4):346–53. doi: 10.1212/WNL.0b013e318208811f.

Source: PubMed

3
구독하다