Androgen sensitivity gateway to COVID-19 disease severity

Carlos Gustavo Wambier, Andy Goren, Sergio Vaño-Galván, Paulo Müller Ramos, Angelina Ossimetha, Gerard Nau, Sabina Herrera, John McCoy, Carlos Gustavo Wambier, Andy Goren, Sergio Vaño-Galván, Paulo Müller Ramos, Angelina Ossimetha, Gerard Nau, Sabina Herrera, John McCoy

Abstract

In this communication, we present arguments for androgen sensitivity as a likely determinant of COVID-19 disease severity. The androgen sensitivity model explains why males are more likely to develop severe symptoms while children are ostensibly resistant to infection. Further, the model explains the difference in COVID-19 mortality rates among different ethnicities. Androgen sensitivity is determined by genetic variants of the androgen receptor. The androgen receptor regulates transcription of the transmembrane protease, serine 2 (TMPRSS2), which is required for SARS-CoV-2 infectivity. TMPRSS2 primes the Spike protein of the virus, which has two consequences: diminishing viral recognition by neutralizing antibodies and activating SARS-CoV-2 for virus-cell fusion. Genetic variants that have been associated with androgenetic alopecia, prostate cancer, benign prostatic hyperplasia and polycystic ovary syndrome could be associated with host susceptibility. In addition to theoretical epidemiological and molecular mechanisms, there are reports of high rates of androgenetic alopecia of from hospitalized COVID-19 patients due to severe symptoms. Androgen sensitivity is a likely determinant of COVID-19 disease severity. We believe that the evidence presented in this communication warrants the initiation of trials using anti-androgen agents.

Keywords: COVID-19; SARS-CoV-2; TMPRSS2; alopecia; androgens; anti-androgen; clinical trial; pandemic.

© 2020 Wiley Periodicals, Inc.

Figures

FIGURE 1
FIGURE 1
Androgen pathway in COVID‐19 infection. Red arrows show the steps that are targeted by androgen blockers, which include: GnRH analogs (Degarelix, Goserelin, Leuprolide, Leuprorelin, Nafarelin), which stop LH secretion and induce chemical castration. Dutasteride and Finasteride are 5‐alpha‐reductase inhibitors, which are safe for men and women after menopause, because dihydrotestosterone (DHT) is the most potent intrinsic androgen hormone. Testosterone is regarded as the main androgen hormone, its production in inhibited by ketoconazole, an inhibitor of steroidogenesis. Androgen receptor inhibitors may be steroidal, such as Abiraterone, Cyproterone, Nomegestrol, or Spironolactone; or nonsteroidal (Apalutamide, Bicalutamide, Darolutamide, Enzalutamide, Flutamide, and Nilutamide). TMPRSS2 blockers include Bromhexine, Camostat, and Nafamostat
FIGURE 2
FIGURE 2
Proposal of host vulnerability stratification following the androgen‐driven COVID‐19 hypothesis, subjects with increased androgen receptor activity through androgen receptor gene polymorphism or through hyperactivation by androgen hormones would be predisposed to increased viral infectivity and cumulative viral load, which would reflect on pronounced symptoms and transmissibility from cell lining of the airways and digestive tract. A spectrum of androgenic activity would imply in polar pauciviral COVID‐19 (e.g., children < 7), with null airway/fecal transmission potential, women with normal androgen activity would have low transmission potential (borderline pauciviral COVID‐19), male teenagers and adults would have high transmission potential (borderline multiviral COVID‐19), and infected individuals with abnormally high androgen receptor activity (genetic or acquired) would represent the multiviral COVID‐19 pole of the spectrum, with extremely high transmission
FIGURE 3
FIGURE 3
Gross testosterone levels per gender, from birth to 85 years of age. Note peak in newborn males, and increase in testosterone levels in both genders after puberty. There is a subtle decrease in testosterone levels with aging. Adapted from: “Sex‐specific genetic architecture of human disease,” C. Ober et al., 2008, Nature Reviews. Genetics, 9(12), 911–922
FIGURE 4
FIGURE 4
Steroidogenesis. Enzyme activities that reduce androgen steroid levels: 21‐hydroxylase and aromatase (red boxes). 21‐Hydroxylase deficiency causes increased production of androgen hormones in females. Male patients who take external androgens may accumulate dihydrotestosterone, particularly when combined with aromatase inhibitors. (Figure source: Wikimedia commons)

References

    1. Afar, D. E. H. , et al. (2001). Catalytic cleavage of the androgen‐regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Research, 61, 1686–1692. Retrieved from
    1. Bani Mohammad, M. , & Majdi Seghinsara, A. (2017). Polycystic ovary syndrome (PCOS), diagnostic criteria, and AMH. Asian Pacific Journal of Cancer Prevention, 18, 17–21.
    1. Bennett, C. L. , Price, D. K. , Kim, S. , Liu, D. , Jovanovic, B. D. , Nathan, D. , … Figg, W. D. (2002). Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. Journal of Clinical Oncology, 20, 3599–3604.
    1. Bialek, S. , et al. (2020). Severe outcomes among patients with coronavirus disease 2019 (COVID‐19)—United States, February 12–March 16, 2020. MMWR. Morbidity and Mortality Weekly Report, 69, 343–346. 10.15585/mmwr.mm6912e2
    1. Canarutto, D. , Priolo, A. , Russo, G. , Pitea, M. , Vigone, M. C. , & Barera, G. (2020). COVID‐19 infection in a paucisymptomatic infant: Raising the index of suspicion in epidemic settings. Pediatric Pulmonology. 55(6). 10.1002/ppul.24754
    1. Channappanavar, R. , Fett, C. , Mack, M. , ten Eyck, P. P. , Meyerholz, D. K. , & Perlman, S. (2017). Sex‐based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. Journal of Immunology, 198, 4046–4053.
    1. Dalpiaz, P. L. M. , Lamas, A. Z. , Caliman, I. F. , Ribeiro, R. F. , Abreu, G. R. , Moyses, M. R. , … Bissoli, N. S. (2015). Sex hormones promote opposite effects on ACE and ACE2 activity, hypertrophy and cardiac contractility in spontaneously hypertensive rats. PLoS One, 10, e0127515.
    1. Gates, B. (2020). Responding to Covid‐19—A once‐in‐a‐century pandemic? The New England Journal of Medicine, 382(18), 1677–1679. 10.1056/NEJMp2003762
    1. Glowacka, I. , Bertram, S. , Muller, M. A. , Allen, P. , Soilleux, E. , Pfefferle, S. , … Pohlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122–4134. 10.1128/JVI.02232-10
    1. Goren, A. , Vano‐Galvan, S. , Wambier, C. , et al. (2020; in press). A preliminary observation: Male pattern hair loss among hospitalized COVID‐19 patients in Spain – A potential clue to the role of androgens in COVID‐19 severity. Journal of Cosmetic Dermatology. IN PRESS, jocd.13443. 10.1111/jocd.13443
    1. Goren, A. , McCoy, J. , Wambier, C. G. , Vano‐Galvan, S. , Shapiro, J. , Dhurat, R. , … Lotti, T. (2020). What does androgenetic alopecia have to do with COVID‐19? An insight into a potential new therapy. Dermatologic Therapy, e13365. 10.1111/dth.13365
    1. Gu, J. , Han, B. , & Wang, J. (2020). COVID‐19: Gastrointestinal manifestations and potential fecal‐oral transmission. Gastroenterology, 158, 1518–1519. 10.1053/j.gastro.2020.02.054
    1. Guan, W. , Ni, Z. , Hu, Y. , Liang, W. , Ou, C. , He, J. , … Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720. 10.1056/NEJMoa2002032
    1. Heurich, A. , Hofmann‐Winkler, H. , Gierer, S. , Liepold, T. , Jahn, O. , & Pohlmann, S. (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. Journal of Virology, 88, 1293–1307.
    1. Hoffmann, M. , Kleine‐Weber, H. , Schroeder, S. , Krüger, N. , Herrler, T. , Erichsen, S. , … Pöhlmann, S. (2020). SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271‐280.e8. 10.1016/j.cell.2020.02.052
    1. Jacquinet, E. , Rao, N. V. , Rao, G. V. , Zhengming, W. , Albertine, K. H. , & Hoidal, J. R. (2001). Cloning and characterization of the cDNA and gene for human epitheliasin. European Journal of Biochemistry, 268, 2687–2699.
    1. Koptyug, E. (2020). Coronavirus (COVID‐19) deaths by gender and age Germany 2020. Statista. Available from
    1. Lin, B. , Ferguson, C. , White, J. T. , Wang, S. , Vessella, R. , True, L. D. , … Nelson, P. S. (1999). Prostate‐localized and androgen‐regulated expression of the membrane‐bound serine protease TMPRSS2. Cancer Research, 59(17), 4180–4184. Retrieved from
    1. Lizneva, D. , Suturina, L. , Walker, W. , Brakta, S. , Gavrilova‐Jordan, L. , & Azziz, R. (2016). Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and Sterility, 106, 6–15.
    1. Lu, X. , Zhang, L. , Du, H. , Zhang, J. , Li, Y. Y. , Qu, J. , … Wong, G. W. K. (2020). SARS‐CoV‐2 Infection in Children. New England Journal of Medicine, 382(17), 1663–1665. 10.1056/NEJMc2005073
    1. Lucas, J. M. , Heinlein, C. , Kim, T. , Hernandez, S. A. , Malik, M. S. , True, L. D. , … Nelson, P. S. (2014). The androgen‐regulated protease TMPRSS2 activates a proteolytic Cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discovery, 4, 1310–1325.
    1. McCoy, J. , Wambier, C. G. , Vano‐Galvan, S. , Shapiro, J. , Sinclair, R. , Müller Ramos, P. , … Goren, A. (2020). Racial Variations in COVID‐19 Deaths May Be Due to Androgen Receptor Genetic Variants Associated with Prostate Cancer and Androgenetic Alopecia. Are Anti‐Androgens a Potential Treatment for COVID‐19? Journal of Cosmetic Dermatology, jocd.13455. 10.1111/jocd.13455
    1. National Institutes of Health (2020). TMPRSS2 transmembrane serine protease 2 [Homo sapiens (human)] Gene ID: 7113. Gene ID: 7113, updated on 13‐Mar‐2020. Available from .
    1. New, M. , & Nonclassical, I. (2006). 21‐hydroxylase deficiency. The Journal of Clinical Endocrinology and Metabolism, 91, 4205–4214.
    1. Ober, C. , Loisel, D. A. , & Gilad, Y. (2008). Sex‐specific genetic architecture of human disease. Nature Reviews. Genetics, 9, 911–922.
    1. Paoloni‐Giacobino, A. , Chen, H. , Peitsch, M. C. , Rossier, C. , & Antonarakis, S. E. (1997). Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics, 44, 309–320.
    1. Paoloni‐Giacobino, A. , Chen, H. , Peitsch, M. C. , Rossier, C. , & Antonarakis, S. E. (2001). Erratum: Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and srcr domains and maps to 21q22.3 (Genomics (1997) 43 (309‐320)). Genomics, 77, 114.
    1. Petersen, E. , Hui, D. , Hamer, D. H. , Blumberg, L. , Madoff, L. C. , Pollack, M. , … Koopmans, M. (2020). Li Wenliang, a face to the frontline healthcare worker. The first doctor to notify the emergence of the SARS‐CoV‐2, (COVID‐19), outbreak. International Journal of Infectious Diseases, 93, 205–207.
    1. Propper, R. E. (2020). Does cigarette smoking protect against SARS‐CoV‐2 infection? Nicotine & Tobacco Research, ntaa073. 10.1093/ntr/ntaa073
    1. Qiu, H. , Wu, J. , Hong, L. , Luo, Y. , Song, Q. , & Chen, D. (2020). Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID‐19) in Zhejiang, China: an observational cohort study. The Lancet Infectious Diseases, 2019(20), 1–8. 10.1016/s1473-3099(20)30198-5
    1. Richardson, S. , Hirsch, J. S. , Narasimhan, M. , Crawford, J. M. , McGinn, T. , Davidson, K. W. , … Zanos, T. P. (2020). Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID‐19 in the New York City Area. JAMA, 10022, 1–8. 10.1001/jama.2020.6775
    1. Rossato, M. , Russo, L. , Mazzocut, S. , Di Vincenzo, A. , Fioretto, P. , & Vettor, R. (2020). Current Smoking is Not Associated with COVID‐19. European Respiratory Journal, 2001290. 10.1183/13993003.01290-2020
    1. Ruth, K. S. , Day, F. R. , Tyrrell, J. , Thompson, D. J. , Wood, A. R. , Mahajan, A. , … Perry, J. R. B. (2020). Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 26(2), 252–258. 10.1038/s41591-020-0751-5
    1. Schüring, A. N. , Welp, A. , Gromoll, J. , Zitzmann, M. , Sonntag, B. , Nieschlag, E. , … Kiesel, L. (2012). Role of the CAG repeat polymorphism of the androgen receptor gene in polycystic ovary syndrome (PCOS). Experimental and Clinical Endocrinology & Diabetes, 120, 73–79.
    1. Shi, Y. , Yu, X. , Zhao, H. , Wang, H. , Zhao, R. , & Sheng, J. (2020). Host susceptibility to severe COVID‐19 and establishment of a host risk score: Findings of 487 cases outside Wuhan. Critical Care, 24, 108.
    1. Stopsack, K. H. , Mucci, L. A. , Antonarakis, E. S. , Nelson, P. S. , & Kantoff, P. W. (2020). TMPRSS2 and COVID‐19: Serendipity or Opportunity for Intervention? Cancer Discovery, CD‐20‐0451. 10.1158/-20-0451
    1. Thebault, R. , Tran, A. B. , & Williams, V. (2020). African Americans are at higher risk of death from coronavirus ‐ The Washington Post. The Washington Post. Available from .
    1. Wambier, C. G. , & Goren, A. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection is likely to be androgen mediated. Journal of the American Academy of Dermatology. 10.1016/j.jaad.2020.04.032
    1. White, P. C. , & Speiser, P. W. (2000). Congenital adrenal hyperplasia due to 21‐hydroxylase deficiency 1. Endocrine Reviews, 21, 245–291.
    1. Wu, Z. , & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China. Jama, 323, 1239. 10.1001/jama.2020.2648
    1. Xu, H. , Zhong, L. , Deng, J. , Peng, J. , Dan, H. , Zeng, X. , … Chen, Q. (2020). High expression of ACE2 receptor of 2019‐nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12, 8.

Source: PubMed

3
구독하다