Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: a crossover, randomized controlled trial

Sarang Jeong, Jung Min Cho, Young-In Kwon, Seong-Chul Kim, Dong Yeob Shin, Jong Ho Lee, Sarang Jeong, Jung Min Cho, Young-In Kwon, Seong-Chul Kim, Dong Yeob Shin, Jong Ho Lee

Abstract

Background: The antidiabetic and hypoglycemic effects of chitosan have been reported in previous studies. We have previously shown that chitosan oligosaccharide reduces postprandial blood glucose levels in vivo. We conducted a short-term crossover study to support the results of the previous study.

Methods: The study was a randomized, double-blind, controlled crossover trial completed at one clinical research site. Subjects with impaired glucose tolerance and impaired fasting glucose and healthy subjects were randomly assigned to consume one of two different experimental test capsules that differed in only the sample source (GO2KA1 vs placebo), and all subjects were instructed to consume the 75 g sucrose within 15 min. After a 7-day interval, the subjects consumed the other capsules that were not consumed on the first day. We assessed blood glucose levels using a 2-h oral sucrose tolerance test. The study was registered at clinicaltrials.gov (NCT03650023).

Results: The test group showed significantly lower blood glucose levels at 60 min (p = 0.010) and postprandial blood glucose areas under the curve (p = 0.012). The change in blood glucose levels at 60 min was significantly lower in the test group than in the placebo group (p = 0.017).

Conclusions: Based on the results of this study, the consumption of chitosan oligosaccharide (GO2KA1) supplements with a meal can effectively reduce postprandial blood glucose levels, which is relevant to the prevention of diabetes.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Flow of the study
Fig. 2. Effects of GO2KA1 on blood…
Fig. 2. Effects of GO2KA1 on blood glucose in the oral sucrose tolerance test (OSTT).
Mean ± SE. *P < 0.05 derived from paired t tests between the placebo and GO2KA1 groups at 0 min, 30 min, 60 min, and 120 min and the areas under the curve (AUCs)
Fig. 3
Fig. 3
Mean ± SE. *P < 0.05 derived from paired t tests between the placebo and GO2KA1 groups at 0 min, 30 min, 60 min, and 120 min. Blood glucose change values from the initial value (0 min) at 0 min, 30 min, 60 min, and 120 min

References

    1. Medina-Remon A, Kirwan R, Lamuela-Raventos RM, Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018;58:262–96.. doi: 10.1080/10408398.2016.1158690.
    1. Nations WoodFOot. Diet, nutrition and the prevention of chronic diseases. World Health Organization or of the Food and Agriculture Organization of the United Nations (2003).
    1. Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes. 2005;54:1–7. doi: 10.2337/diabetes.54.1.1.
    1. WHO. Prevention and Control of Noncommunicable Diseases: Guidelines for primary health care in low-resource settings. World Health Organization (2012).
    1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care29. S43-S48 (2006).
    1. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet (Lond., Engl.). 2012;379:2279–90.. doi: 10.1016/S0140-6736(12)60283-9.
    1. CDC. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA. US Dept of Health and Human Services, Centers for Disease Control and Prevention. 201, 2568–2569 (2011).
    1. Safety KMoFaD. Status of recognition of ingredients for health function foods, 2016. Korea Ministry of Food and Drug Safety: MK Son (2016).
    1. Liu X, et al. Antidiabetic effect of Pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004;75:2505–13.. doi: 10.1016/j.lfs.2003.10.043.
    1. Fukushima M, et al. Effect of corosolic acid on postchallenge plasma glucose levels. Diabetes Res. Clin. Pract. 2006;73:174–177. doi: 10.1016/j.diabres.2006.01.010.
    1. Hosoda K, et al. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care. 2003;26:1714–1718. doi: 10.2337/diacare.26.6.1714.
    1. Triplitt CL. Examining the mechanisms of glucose regulation. Am. J. Manag. Care. 2012;18:S4–S10.
    1. Cooperberg BA, Cryer PE. Insulin reciprocally regulates glucagon secretion in humans. Diabetes. 2010;59:2936–2940. doi: 10.2337/db10-0728.
    1. Chan CB, et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes. 2001;50:1302–10.. doi: 10.2337/diabetes.50.6.1302.
    1. Muller WA, Faloona GR, Unger RH. The effect of experimental insulin deficiency on glucagon secretion. J. Clin. Investig. 1971;50:1992–1999. doi: 10.1172/JCI106691.
    1. Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2003;284:E671–E8.. doi: 10.1152/ajpendo.00492.2002.
    1. Gerich JE, Charles MA, Grodsky GM. Regulation of pancreatic insulin and glucagon secretion. Annu. Rev. Physiol. 1976;38:353–88.. doi: 10.1146/annurev.ph.38.030176.002033.
    1. Peniche C., Argüelles-Monal W., Goycoolea F. Chitin and chitosan: major sources, properties and applications. Monomers, polymers and composites from renewable resources. p. 517–542 (Elsevier; 2008).
    1. Kim S.-K. Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications: CRC Press; 2010.
    1. Seyfarth F, Schliemann S, Elsner P, Hipler UC. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int. J. Pharmaceutics. 2008;353:139–148.
    1. Lin C-W, Huang H-H, Yang C-M, Yang C-H. Protective effect of chitosan oligosaccharides on blue light light-emitting diode induced retinal pigment epithelial cell damage. J. Funct. Foods. 2018;49:12–19. doi: 10.1016/j.jff.2018.08.007.
    1. Cho Y-H, et al. Control of late blight of tomato and potato by oilgochitosan. Res. Plant Dis. 2011;17:129–35.. doi: 10.5423/RPD.2011.17.2.129.
    1. Ito M, Ban A, Ishihara M. Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Jpn. J. Pharmacol. 2000;82:218–25.. doi: 10.1254/jjp.82.218.
    1. Bokura H, Kobayashi S. Chitosan decreases total cholesterol in women: a randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr. 2003;57:721–725. doi: 10.1038/sj.ejcn.1601603.
    1. Han LK, Kimura Y, Okuda H. Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet. Int. J. Obes. Relat. Metab. Disord. 1999;23:174–179. doi: 10.1038/sj.ijo.0800806.
    1. Kim JN, Chang IY, Kim HI, Yoon SP. Long-term effects of chitosan oligosaccharide in streptozotocin-induced diabetic rats. Islets. 2009;1:111–116. doi: 10.4161/isl.1.2.9143.
    1. Kondo Y, Nakatani A, Hayashi K, Ito M. Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol. Pharm. Bull. 2000;23:1458–1464. doi: 10.1248/bpb.23.1458.
    1. Kim YC, Kim SH, Yoon SP, Kim JW. Reducing effect of chitosan oligosaccharide on postprandial blood glucose level in Koreans. Korean Soc. Chitin Chitosan. 2009;14:107–111.
    1. Jo SH, et al. Molecular weight dependent glucose lowering effect of low molecular weight Chitosan Oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model. Int. J. Mol. Sci. 2013;14:14214–24.. doi: 10.3390/ijms140714214.
    1. Kim HJ, et al. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes. Food Funct. 2014;5:2662–2669. doi: 10.1039/C4FO00469H.
    1. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 1999;131:281–303. doi: 10.7326/0003-4819-131-4-199908170-00008.
    1. Willis WD, Diago-Cabezudo JI, Madec-Hily A, Aslam A. Medical resource use, disturbance of daily life and burden of hypoglycemia in insulin-treated patients with diabetes: results from a European online survey. Expert Rev. Pharmacoecon. Outcomes Res. 2013;13:123–30.. doi: 10.1586/erp.12.80.
    1. Crapo PA, Reaven G, Olefsky J. Plasma glucose and insulin responses to orally administered simple and complex carbohydrates. Diabetes. 1976;25:741–747. doi: 10.2337/diab.25.9.741.
    1. Kelsay JL, Behall KM, Holden JM, Prather ES. Diets high in glucose or sucrose and young women. Am. J. Clin. Nutr. 1974;27:926–36.. doi: 10.1093/ajcn/27.9.926.
    1. Kim JG, et al. Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complement. Altern. Med. 2014;14:272. doi: 10.1186/1472-6882-14-272.
    1. Lee HW, Park YS, Choi JW, Yi SY, Shin WS. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull. 2003;26:1100–1103. doi: 10.1248/bpb.26.1100.
    1. Song S, et al. Establishing a table of glycemic index values for common Korean foods and an evaluation of the dietary glycemic index among the Korean adult population. Korean J. Nutr. 2012;45:80–93. doi: 10.4163/kjn.2012.45.1.80.
    1. Association AD. Postprandial blood glucose. American Diabetes Association. Diabetes care. 2001;24:775–778. doi: 10.2337/diacare.24.4.775.
    1. Wang X, et al. Delay in glucose peak time during the oral glucose tolerance test as an indicator of insulin resistance and insulin secretion in type 2 diabetes patients. J. Diabetes Investig. 2018;9:1288–95.. doi: 10.1111/jdi.12834.
    1. Kramer CK, Vuksan V, Choi H, Zinman B, Retnakaran R. Emerging parameters of the insulin and glucose response on the oral glucose tolerance test: reproducibility and implications for glucose homeostasis in individuals with and without diabetes. Diabetes Res. Clin. Pract. 2014;105:88–95. doi: 10.1016/j.diabres.2014.04.023.
    1. Ha R. Y., Cho H.-S. Pros and cons of various research designs in clinical psychiatry. Korean J. Biol. Psychiatry.19,159–63 (2012).
    1. Williams RF, Gleason RE, Soeldner JS. The half-life of endogenous serum immunoreactive insulin in man. Metab. Clin. Exp. 1968;17:1025–1029. doi: 10.1016/0026-0495(68)90009-7.
    1. Ho Y. Glucose Metabolism and Diabetes. Patient-Specific Controller for an Implantable Artificial Pancreas. p. 11–17 (Springer; 2019).
    1. Koga M, et al. Calculation of HbA1c and glycated albumin from serially measured self-monitored blood glucose in patients with type 1 diabetes mellitus. Clin. Chim. Acta. 2013;425:188–191. doi: 10.1016/j.cca.2013.07.029.
    1. Genova J, Zheliaskova A, Mitov M. Monosaccharides (fructose, glucose) and disaccharides (sucrose, trehalose) influence the elasticity of SOPC membranes. J. Optoelectron. Adv. Mater. 2007;9:427.

Source: PubMed

3
구독하다