The impact of long-term school-based physical activity interventions on body mass index of primary school children - a meta-analysis of randomized controlled trials

Hong Mei, Yuelin Xiong, Shuixian Xie, Siyu Guo, Yukun Li, Bingbing Guo, Jianduan Zhang, Hong Mei, Yuelin Xiong, Shuixian Xie, Siyu Guo, Yukun Li, Bingbing Guo, Jianduan Zhang

Abstract

Background: Physical activity (PA) intervention is a commonly recommended strategy to combat childhood obesity. However, its effectiveness has long been controversial. This paper aims to examine the effectiveness of long-term (≥12 months) school-based PA interventions on body mass index (BMI) in primary school children, who are gaining BMI.

Methods: Original papers were retrieved from PubMed, Google Scholar, the Cochrane Library and Web of Science, published between 1990 and 2015. The inclusion criteria were those research studies that were: randomized controlled trials (RCTs), conducted in primary school settings, had valid data on BMI at baseline and at the final follow up (or on BMI changes), and involved PA intervention that lasted for at least 12 months.

Results: Out of 11,158 potentially eligible articles, 18 papers were included in the analysis, involving 22,381 primary school children with intervention durations ranging from 12 to 72 months. Compared to the control groups, the BMI increment was 2.23 kg/m(2) less in the intervention groups (p < 0.05). The heterogeneity was high across the studies (99.8 %), but declined after sub-group analyses. The intervention type, intervention duration, and weekly PA intervention time were among the factors leading to the heterogeneity.

Conclusion: Long-term school-based interventions containing PA as a core component appear to be effective in achieving healthier BMI. However, the results should be interpreted with caution due to the high heterogeneity among the studies. More high quality school-based RCTs among diverse populations are needed to improve the homogeneity and to yield a more robust conclusion.

Figures

Fig. 1
Fig. 1
Flow Diagram of article research
Fig. 2
Fig. 2
The forest plot for the 18 studies by publishing year. The filled triangles and diamonds represent the SMD and 90 % confidence interval for each study with a default weight percentage. The diamond with hollow refers to the overall SMD and 90 % CI, along with the vertical dashed line as centerline of the average SMD for the 18 studies. Random effect was used for the analysis
Fig. 3
Fig. 3
The funnel plot for the 18 studies. The horizontal axis is the coefficient of SMD for BMI change in intervention groups and control groups, and vertical axis (s.e.of: SMD) is the reciprocal of SMD for BMI change in intervention groups and control groups. Random effect was used for the analysis

References

    1. Wang Y, Lim H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int Rev Psychiatry. 2012;24(3):176–88. doi: 10.3109/09540261.2012.688195.
    1. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102. doi: 10.1053/j.gastro.2007.03.052.
    1. Reuter CP, Burgos LT, Camargo MD, Possuelo LG, Reckziegel MB, Reuter EM, Meinhardt FP, Burgos MS. Prevalence of obesity and cardiovascular risk among children and adolescents in the municipality of Santa Cruz do Sul, Rio Grande do Sul. Sao Paulo Med J. 2013;131(5):323–30. doi: 10.1590/1516-3180.2013.1315518.
    1. Raj M. Obesity and cardiovascular risk in children and adolescents. Indian J Endocrinol Metab. 2012;16(1):13–9. doi: 10.4103/2230-8210.91176.
    1. Sonntag D, Ali S, Lehnert T, Konnopka A, Riedel-Heller S, Konig HH. Estimating the lifetime cost of childhood obesity in Germany: results of a Markov Model. Pediatr Obes. 2015;10(6):416–22. doi: 10.1111/ijpo.278.
    1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81. doi: 10.1016/S0140-6736(14)60460-8.
    1. Baranowski T, Cullen KW, Nicklas T, Thompson D, Baranowski J. School-based obesity prevention: a blueprint for taming the epidemic. Am J Health Behav. 2002;26(6):486–93. doi: 10.5993/AJHB.26.6.9.
    1. Solmi F, Morris S. Association between childhood obesity and use of regular medications in the UK: longitudinal cohort study of children aged 5-11 years. BMJ Open. 2015;5(6):e7373. doi: 10.1136/bmjopen-2014-007373.
    1. Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45(11):886–95. doi: 10.1136/bjsports-2011-090185.
    1. Pate RR, Wang C, Dowda M, Farrell SW, O Neill JR. Cardiorespiratory fitness levels among US youth 12 to 19 years of age: findings from the 1999-2002 National Health and Nutrition Examination Survey. Arch Pediat Adol Med. 2006;160(10):1005–12. doi: 10.1001/archpedi.160.10.1005.
    1. Flynn M, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, Tough SC. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with‘best practice’recommendations. OBES REV. 2006;7(s1):7–66. doi: 10.1111/j.1467-789X.2006.00242.x.
    1. Freedson PS. Physical activity among children and youth. J Can des sciences du sport. 1992;17(4):280–3.
    1. McCreary LL, Park CG, Gomez L, Peterson S, Pino D, McElmurry BJ. A mixed-methods evaluation of school-based active living programs. Am J Prev Med. 2012;43(5):S395–8. doi: 10.1016/j.amepre.2012.06.030.
    1. Reading R. Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials. Child Care Health Dev. 2008;34(2):279.
    1. Lissau I. Prevention of overweight in the school arena. Acta Paediatr. 2007;96(s454):12–8. doi: 10.1111/j.1651-2227.2007.00164.x.
    1. Kavey RW, Daniels SR, Lauer RM, Atkins DL, Hayman LL, Taubert K. American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. Circulation. 2003;107(11):1562–6. doi: 10.1161/01.CIR.0000061521.15730.6E.
    1. Salmon J, Booth ML, Phongsavan P, Murphy N, Timperio A. Promoting physical activity participation among children and adolescents. Epidemiol Rev. 2007;29(1):144–59. doi: 10.1093/epirev/mxm010.
    1. Sahota P, Rudolf MC, Dixey R, Hill AJ, Barth JH, Cade J. Randomised controlled trial of primary school based intervention to reduce risk factors for obesity. BMJ. 2001;323(7320):1029. doi: 10.1136/bmj.323.7320.1029.
    1. Haynos AF, O'Donohue WT. Universal childhood and adolescent obesity prevention programs: review and critical analysis. Clin Psychol Rev. 2012;32(5):383–99. doi: 10.1016/j.cpr.2011.09.006.
    1. Ridgers ND, Salmon J, Parrish A, Stanley RM, Okely AD. Physical activity during school recess: a systematic review. Am J Prev Med. 2012;43(3):320–8. doi: 10.1016/j.amepre.2012.05.019.
    1. Demetriou Y, Höner O. Physical activity interventions in the school setting: a systematic review. Psychol Sport Exerc. 2012;13(2):186–96. doi: 10.1016/j.psychsport.2011.11.006.
    1. Verrotti A, Penta L, Zenzeri L, Agostinelli S, De Feo P. Childhood obesity: prevention and strategies of intervention. A systematic review of school-based interventions in primary schools. J Endocrinol Invest. 2014;37(12):1155–64. doi: 10.1007/s40618-014-0153-y.
    1. Shirley K, Rutfield R, Hall N, Fedor N, McCaughey VK, Zajac K. Combinations of obesity prevention strategies in US elementary schools: a critical review. J Prim Prev. 2015;36(1):1–20. doi: 10.1007/s10935-014-0370-3.
    1. Gonzalez-Suarez C, Worley A, Grimmer-Somers K, Dones V. School-based interventions on childhood obesity: a meta-analysis. Am J Prev Med. 2009;37(5):418–27. doi: 10.1016/j.amepre.2009.07.012.
    1. Stice E, Shaw H, Marti CN. A meta-analytic review of obesity prevention programs for children and adolescents: the skinny on interventions that work. Psychol Bull. 2006;132(5):667. doi: 10.1037/0033-2909.132.5.667.
    1. Duncan MJ, Al-Nakeeb Y, Nevill AM. Effects of a 6-week circuit training intervention on body esteem and body mass index in British primary school children. Body Image. 2009;6(3):216–20. doi: 10.1016/j.bodyim.2009.04.003.
    1. Flodmark C, Marcus C, Britton M. Interventions to prevent obesity in children and adolescents: a systematic literature review. Int J Obes. 2006;30(4):579–89. doi: 10.1038/sj.ijo.0803290.
    1. Lanigan J, Collins S, Birbara T, Kokoreli M, Singhal A. The TrimTots programme for prevention and treatment of obesity in preschool children: evidence from two randomised controlled trials. Lancet. 2013;382:S58. doi: 10.1016/S0140-6736(13)62483-6.
    1. Datar A, Sturm R. Physical education in elementary school and body mass index: evidence from the early childhood longitudinal study. Am J Public Health. 2004;94(9):1501. doi: 10.2105/AJPH.94.9.1501.
    1. Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.
    1. Guerra PH, Nobre MRC, Silveira JACD, Taddei JADA. The effect of school-based physical activity interventions on body mass index: a meta-analysis of randomized trials. Clinics. 2013;68(9):1263–73. doi: 10.6061/clinics/2013(09)14.
    1. Karweit N. Should we lengthen the school term? Educ Researcher. 1985;14(6):9–15. doi: 10.3102/0013189X014006009.
    1. Manios Y, Moschandreas J, Hatzis C, Kafatos A. Health and nutrition education in primary schools of Crete: changes in chronic disease risk factors following a 6-year intervention programme. Br J Nutr. 2002;88(3):315–24. doi: 10.1079/BJN2002672.
    1. Nader PR, Stone EJ, Lytle LA, Perry CL, Osganian SK, Kelder S, Webber LS, Elder JP, Montgomery D, Feldman HA, et al. Three-year maintenance of improved diet and physical activity: the CATCH cohort. Child and Adolescent Trial for Cardiovascular Health. Arch Pediatr Adolesc Med. 1999;153(7):695–704. doi: 10.1001/archpedi.153.7.695.
    1. Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, Grimshaw J, Henry DA, Boers M. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009;62(10):1013–20. doi: 10.1016/j.jclinepi.2008.10.009.
    1. Clark HD, Wells GA, Huet C, McAlister FA, Salmi LR, Fergusson D, Laupacis A. Assessing the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials. 1999;20(5):448–52. doi: 10.1016/S0197-2456(99)00026-4.
    1. Llargues E, Franco R, Recasens A, Nadal A, Vila M, Perez MJ, Manresa JM, Recasens I, Salvador G, Serra J, et al. Assessment of a school-based intervention in eating habits and physical activity in school children: the AVall study. J Epidemiol Community Health. 2011;65(10):896–901. doi: 10.1136/jech.2009.102319.
    1. Llargues E, Recasens A, Franco R, Nadal A, Vila M, Perez MJ, Recasens I, Salvador G, Serra J, Roure E, et al. Medium-term evaluation of an educational intervention on dietary and physical exercise habits in schoolchildren: the Avall 2 study. Endocrinol Nutr. 2012;59(5):288–95. doi: 10.1016/j.endonu.2012.03.002.
    1. MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34(4):755–64. doi: 10.1016/j.bone.2003.12.017.
    1. Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La RH, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785. doi: 10.1136/bmj.c785.
    1. Angelopoulos PD, Milionis HJ, Grammatikaki E, Moschonis G, Manios Y. Changes in BMI and blood pressure after a school based intervention: the CHILDREN study. Eur J Public Health. 2009;19(3):319–25. doi: 10.1093/eurpub/ckp004.
    1. Magnusson KT, Hrafnkelsson H, Sigurgeirsson I, Johannsson E, Sveinsson T. Limited effects of a 2-year school-based physical activity intervention on body composition and cardiorespiratory fitness in 7-year-old children. Health Educ Res. 2012;27(3):484–94. doi: 10.1093/her/cys049.
    1. Ahamed Y, Macdonald H, Reed K, Naylor PJ, Liu-Ambrose T, McKay H. School-based physical activity does not compromise children’s academic performance. Med Sci Sports Exerc. 2007;39(2):371–6. doi: 10.1249/01.mss.0000241654.45500.8e.
    1. Salcedo AF, Martinez-Vizcaino V, Sanchez LM, Solera MM, Franquelo GR, Serrano MS, Lopez-Garcia E, Rodriguez-Artalejo F. Impact of an after-school physical activity program on obesity in children. J Pediatr. 2010;157(1):36–42. doi: 10.1016/j.jpeds.2009.12.046.
    1. Graf C, Koch B, Falkowski G, Jouck S, Christ H, Staudenmaier K, Tokarski W, Gerber A, Predel HG, Dordel S. School-based prevention: effects on obesity and physical performance after 4 years. J Sports Sci. 2008;26(10):987–94. doi: 10.1080/02640410801930176.
    1. Tarro L, Llaurado E, Albaladejo R, Morina D, Arija V, Sola R, Giralt M. A primary-school-based study to reduce the prevalence of childhood obesity--the EdAl (Educacio en Alimentacio) study: a randomized controlled trial. Trials. 2014;15:58. doi: 10.1186/1745-6215-15-58.
    1. Caballero B, Clay T, Davis SM, Ethelbah B, Rock BH, Lohman T, Norman J, Story M, Stone EJ, Stephenson L, et al. Pathways: a school-based, randomized controlled trial for the prevention of obesity in American Indian schoolchildren. Am J Clin Nutr. 2003;78(5):1030–8.
    1. Donnelly JE, Greene JL, Gibson CA, Smith BK, Washburn RA, Sullivan DK, DuBose K, Mayo MS, Schmelzle KH, Ryan JJ, et al. Physical Activity Across the Curriculum (PAAC): a randomized controlled trial to promote physical activity and diminish overweight and obesity in elementary school children. Prev Med. 2009;49(4):336–41. doi: 10.1016/j.ypmed.2009.07.022.
    1. Lohman T, Thompson J, Going S, Himes JH, Caballero B, Norman J, Cano S, Ring K. Indices of changes in adiposity in American Indian children. Prev Med. 2003;37(6 Pt 2):S91–6. doi: 10.1016/j.ypmed.2003.08.004.
    1. Dzewaltowski DA, Rosenkranz RR, Geller KS, Coleman KJ, Welk GJ, Hastmann TJ, Milliken GA. HOP’N after-school project: an obesity prevention randomized controlled trial. Int J Behav Nutr Phys Act. 2010;7:90. doi: 10.1186/1479-5868-7-90.
    1. Li YP, Hu XQ, Schouten EG, Liu AL, Du SM, Li LZ, Cui ZH, Wang D, Kok FJ, Hu FB, et al. Report on childhood obesity in China (8): effects and sustainability of physical activity intervention on body composition of Chinese youth. Biomed Environ Sci. 2010;23(3):180–7. doi: 10.1016/S0895-3988(10)60050-5.
    1. Jiang J, Xia X, Greiner T, Wu G, Lian G, Rosenqvist U. The effects of a 3-year obesity intervention in schoolchildren in Beijing. Child Care Health Dev. 2007;33(5):641–6. doi: 10.1111/j.1365-2214.2007.00738.x.
    1. Adab P, Pallan MJ, Lancashire ER, Hemming K, Frew E, Griffin T, Barrett T, Bhopal R, Cade JE, Daley A, et al. A cluster-randomised controlled trial to assess the effectiveness and cost-effectiveness of a childhood obesity prevention programme delivered through schools, targeting 6-7 year old children: the WAVES study protocol. BMC Public Health. 2015;15:488. doi: 10.1186/s12889-015-1800-8.
    1. Meyer U, Schindler C, Zahner L, Ernst D, Hebestreit H, van Mechelen W, Brunner-La Rocca H, Probst-Hensch N, Puder JJ, Kriemler S. Long-term effect of a school-based physical activity program (KISS) on fitness and adiposity in children: a cluster-randomized controlled trial. Plos One. 2014;9(2):e87929. doi: 10.1371/journal.pone.0087929.
    1. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) Diabetes Care. 2008;31(2):369–71. doi: 10.2337/dc07-1795.
    1. Brown T, Summerbell C. Systematic review of school‐based interventions that focus on changing dietary intake and physical activity levels to prevent childhood obesity: an update to the obesity guidance produced by the National Institute for Health and Clinical Excellence. Obes Rev. 2009;10(1):110–41. doi: 10.1111/j.1467-789X.2008.00515.x.
    1. De Bourdeaudhuij I, Van Cauwenberghe E, Spittaels H, Oppert JM, Rostami C, Brug J, Van Lenthe F, Lobstein T, Maes L. School‐based interventions promoting both physical activity and healthy eating in Europe: a systematic review within the HOPE project. Obes Rev. 2011;12(3):205–16. doi: 10.1111/j.1467-789X.2009.00711.x.
    1. Kriemler S, Meyer U, Martin E, van Sluijs EM, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45(11):923–30. doi: 10.1136/bjsports-2011-090186.
    1. Khambalia AZ, Dickinson S, Hardy LL, Gill T, Baur LA. A synthesis of existing systematic reviews and meta-analyses of school-based behavioural interventions for controlling and preventing obesity. Obes Rev. 2012;13(3):214–33. doi: 10.1111/j.1467-789X.2011.00947.x.
    1. Lavelle HV, Mackay DF, Pell JP. Systematic review and meta-analysis of school-based interventions to reduce body mass index. J Public Health. 2012;34(3):360–9. doi: 10.1093/pubmed/fdr116.
    1. Heath GW, Parra DC, Sarmiento OL, Andersen LB, Owen N, Goenka S, Montes F, Brownson RC. Evidence-based intervention in physical activity: lessons from around the world. Lancet. 2012;380(9838):272–81. doi: 10.1016/S0140-6736(12)60816-2.
    1. Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54) BMJ. 2012;345:e5888. doi: 10.1136/bmj.e5888.
    1. Lonsdale C, Rosenkranz RR, Peralta LR, Bennie A, Fahey P, Lubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Prev Med. 2013;56(2):152–61. doi: 10.1016/j.ypmed.2012.12.004.
    1. Harris KC, Kuramoto LK, Schulzer M, Retallack JE. Effect of school-based physical activity interventions on body mass index in children: a meta-analysis. Can Med Assoc J. 2009;180(7):719–26. doi: 10.1503/cmaj.080966.
    1. Council on Sports Medicine and Fitness. Council on School Health Active healthy living: prevention of childhood obesity through increased physical activity. Pediatrics. 2006;117(5):1834–42. doi: 10.1542/peds.2006-0472.
    1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9. doi: 10.1503/cmaj.051351.
    1. Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7. doi: 10.1016/j.jpeds.2005.01.055.
    1. Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD, Grallert H, Illig T, Wichmann H, Rief W. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361. doi: 10.1371/journal.pone.0001361.
    1. Li SJ, Jiang H, Yang H, Chen W, Peng J, Sun MW, Lu CD, Peng X, Zeng J. The dilemma of heterogeneity tests in meta-analysis: a challenge from a simulation study. PLoS One. 2015;10(5):e127538.
    1. Dwan K, Altman DG, Arnaiz JA, Bloom J, Chan A, Cronin E, Decullier E, Easterbrook PJ, Von Elm E, Gamble C. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One. 2008;3(8):e3081. doi: 10.1371/journal.pone.0003081.
    1. Wu Y. Overweight and obesity in China: the once lean giant has a weight problem that is increasing rapidly. BMJ. 2006;333(7564):362. doi: 10.1136/bmj.333.7564.362.
    1. Li M, Dibley MJ, Sibbritt DW, Zhou X, Yan H. Physical activity and sedentary behavior in adolescents in Xi’an City, China. J Adolescent Health. 2007;41(1):99–101. doi: 10.1016/j.jadohealth.2007.02.005.
    1. Chmielewska A, Szajewska H. Systematic review of randomised controlled trials: probiotics for functional constipation. World J Gastro. 2010;16(1):69.
    1. Huang G, Su Z, Liu J, Yan Y, Meng L, Cheng H, Mi J. The current status of physical activity in urban school-aged children and its association with obesity. Zhonghua Liu Xing Bing Xue Za Zhi. 2014;35(4):376–80.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8. doi: 10.1249/mss.0b013e31815a51b3.
    1. Gaston A, Edwards SA, Doelman A, Tober JA. The impact of parenthood on Canadians’ objectively measured physical activity: an examination of cross-sectional population-based data. BMC Public Health. 2014;14:1127. doi: 10.1186/1471-2458-14-1127.

Source: PubMed

3
구독하다