Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs

M A D Vente, J F W Nijsen, T C de Wit, J H Seppenwoolde, G C Krijger, P R Seevinck, A Huisman, B A Zonnenberg, T S G A M van den Ingh, A D van het Schip, M A D Vente, J F W Nijsen, T C de Wit, J H Seppenwoolde, G C Krijger, P R Seevinck, A Huisman, B A Zonnenberg, T S G A M van den Ingh, A D van het Schip

Abstract

Purpose: The aim of this study is to evaluate the toxicity of holmium-166 poly(L-lactic acid) microspheres administered into the hepatic artery in pigs.

Methods: Healthy pigs (20-30 kg) were injected into the hepatic artery with holmium-165-loaded microspheres ((165)HoMS; n=5) or with holmium-166-loaded microspheres ((166)HoMS; n=13). The microspheres' biodistribution was assessed by single-photon emission computed tomography and/or MRI. The animals were monitored clinically, biochemically, and ((166)HoMS group only) hematologically over a period of 1 month ((165)HoMS group) or over 1 or 2 months ((166)HoMS group). Finally, a pathological examination was undertaken.

Results: After microsphere administration, some animals exhibited a slightly diminished level of consciousness and a dip in appetite, both of which were transient. Four lethal adverse events occurred in the (166)HoMS group due either to incorrect administration or comorbidity: inadvertent delivery of microspheres into the gastric wall (n=2), preexisting gastric ulceration (n=1), and endocarditis (n=1). AST levels were transitorily elevated post-(166)HoMS administration. In the other blood parameters, no abnormalities were observed. Nuclear scans were acquired from all animals from the (166)HoMS group, and MRI scans were performed if available. In pigs from the (166)HoMS group, atrophy of one or more liver lobes was frequently observed. The actual radioactivity distribution was assessed through ex vivo (166m)Ho measurements.

Conclusion: It can be concluded that the toxicity profile of HoMS is low. In pigs, hepatic arterial embolization with (166)HoMS in amounts corresponding with liver-absorbed doses of over 100 Gy, if correctly administered, is not associated with clinically relevant side effects. This result offers a good perspective for upcoming patient trials.

Figures

Fig. 1
Fig. 1
MR arteriography of the thorax and abdomen of a pig, anteroposterior projection (a); excerpt of a (b): common hepatic artery (1), splenic artery (2), caudal phrenic artery (3), gastroduodenal artery (4), (branches of the) proper hepatic artery (5), right hepatic artery (6), medial hepatic arteries (7), left hepatic artery (8), and right gastric artery (9)
Fig. 2
Fig. 2
Liver enzymes serum activities. Time in between samples was 3 or 4 days, and value 1 was derived from samples taken before microsphere administration: serum activities of GGT (a), serum activities of ALP (b), serum activities of ALT (c), serum activities of AST (d)
Fig. 3
Fig. 3
Hematological values. Time in between samples was 3 or 4 days, and value 1 was derived from samples taken before microsphere administration: hemoglobin concentrations (a), platelet counts (b), leukocyte counts (c), prothrombin time (d)
Fig. 4
Fig. 4
a Liver of pig 3 (165HoMS): aggregate of microspheres within a hepatic artery with fibrosis and multinucleated giant cells. b Liver of pig 3 (165HoMS): large portal area with necrosis surrounded by macrophages and multinucleated giant cells and a fibrous capsule with large aggregates of microspheres. c Liver of pig 8 (166HoMS): a confined moderate-sized aggregate, probably within a hepatic artery, surrounded by hepatic necrosis and hemorrhage of the surrounding parenchyma and partial necrosis of the portal structures. d Stomach of pig 10 (166HoMS): submucosal artery with microspheres associated with fibrinoid deposition and necrosis of the arterial wall. e Liver of pig 11 (166HoMS): large area with yellow necrosis and a large aggregate of microspheres within a necrotic hepatic artery. f Gallbladder of pig 16 (166HoMS): lumen filled with necrotic debris, macrophages, and some neutrophils. Marked fibrosis of the wall with an aggregate of microspheres within an artery
Fig. 5
Fig. 5
Nuclear images of pigs administered 166HoMS. Planar nuclear scan of pig 15, demonstrating highly selective deposition of 166HoMS microspheres in the liver (a); planar nuclear scan of pig 18, on which a substantial amount of 166Ho (17.4%) is revealed to be present in the gastric wall (b); planar nuclear scan of pig 10, demonstrating excessive amounts of radioactivity (52.5% of injected dose) present in the stomach. An intense hotspot in the lesser curvature of the stomach is depicted by the arrow (c)
Fig. 6
Fig. 6
In vivo coronal (ac) and transverse (d–f) MR images of pig 17. The anatomical images are found in a and d (T1-weighted SE), and b and e (T2-weighted SE images). c and f The holmium-sensitive T2*-weighted GE images. In the T1-weighted SE images, the vessels and gallbladder show up as hypo-intense structures and as hyperintense structures in the T2-weighted SE images. In the T2*-weighted GE images, the clusters of microspheres are visualized as additional focal regions of signal loss, especially in the dorsal region

References

    1. Garrean S, Muhs A, Bui JT, Blend MJ, Owens C, Helton WS, et al. Complete eradication of hepatic metastasis from colorectal cancer by Yttrium-90 SIRT. World J Gastroenterol. 2007;13:3016–9.
    1. Sato K, Lewandowski RJ, Bui JT, Omary R, Hunter RD, Kulik L, et al. Treatment of unresectable primary and metastatic liver cancer with yttrium-90 microspheres (TheraSphere(R)): assessment of hepatic arterial embolization. Cardiovasc Interv Radiol. 2006;29:522–9. doi: 10.1007/s00270-005-0171-4.
    1. Sangro B, Bilbao JI, Boan J, Martinez-Cuesta A, Benito A, Rodriguez J, et al. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2006;66:792–800.
    1. Kennedy AS, Coldwell D, Nutting C, Murthy R, Wertman DE, Jr., Loehr SP, et al. Resin (90)Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys. 2006;65:412–25.
    1. Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G, et al. Randomised phase 2 trial of SIR-spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85. doi: 10.1002/jso.20141.
    1. Andrews JC, Walker SC, Ackermann RJ, Cotton LA, Ensminger WD, Shapiro B. Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med. 1994;35:1637–44.
    1. Nijsen JFW, Van het Schip AD, Hennink WE, Rook DW, Van Rijk PP, De Klerk JMH. Advances in nuclear oncology: microspheres for internal radionuclide therapy of liver metastases. Current Med Chem. 2002;9:73–82.
    1. Ho S, Lau JW, Leung TW. Intrahepatic (90)Y-microspheres for hepatocellular carcinoma. J Nucl Med. 2001;42:1587–9.
    1. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25(Suppl 1):S41–55. doi: 10.1148/rg.25si055515.
    1. Murthy R, Xiong H, Nunez R, Cohen AC, Barron B, Szklaruk J, et al. Yttrium 90 resin microspheres for the treatment of unresectable colorectal hepatic metastases after failure of multiple chemotherapy regimens: preliminary results. J Vasc Interv Radiol. 2005;16:937–45.
    1. Popperl G, Helmberger T, Munzing W, Schmid R, Jacobs TF, Tatsch K. Selective internal radiation therapy with SIR-Spheres in patients with nonresectable liver tumors. Cancer Biother Radiopharm. 2005;20:200–8. doi: 10.1089/cbr.2005.20.200.
    1. De Wit TC, Xiao J, Nijsen JF, Van het Schip AD, Staelens SG, Van Rijk PP, et al. Hybrid scatter correction applied to quantitative holmium-166 SPECT. Phys Med Biol. 2006;51:4773–87. doi: 10.1088/0031-9155/51/19/004.
    1. Ho S, Lau WY, Leung TW, Chan M, Chan KW, Lee WY, et al. Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. Br J Radiol. 1997;70:823–8.
    1. Seppenwoolde JH, Nijsen JF, Bartels LW, Zielhuis SW, Van het Schip AD, Bakker CJ. Internal radiation therapy of liver tumors: qualitative and quantitative magnetic resonance imaging of the biodistribution of holmium-loaded microspheres in animal models. Magn Reson Med. 2004;53:76–84. doi: 10.1002/mrm.20320.
    1. Nijsen JF, Seppenwoolde JH, Havenith T, Bos C, Bakker CJ, Van het Schip AD. Liver tumors: MR imaging of radioactive holmium microspheres—phantom and rabbit study. Radiology. 2004;231:491–9. doi: 10.1148/radiol.2312030594.
    1. Seppenwoolde JH, Bartels LW, Van der Weide R, Nijsen JF, Van het Schip AD, Bakker CJ. Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging. 2006;23:123–9. doi: 10.1002/jmri.20479.
    1. Zielhuis SW, Nijsen JF, Dorland L, Krijger GC, Van het Schip AD, Hennink WE. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis. Int J Pharm. 2006;315:67–74. doi: 10.1016/j.ijpharm.2006.02.010.
    1. Zielhuis SW, Nijsen JFW, De Roos R, Krijger GC, Van Rijk PP, Hennink WE, et al. Production of GMP-grade radioactive holmium loaded poly(l-lactic acid) microspheres for clinical application. Int J Pharm. 2006;311:69–74. doi: 10.1016/j.ijpharm.2005.12.034.
    1. Nijsen JFW, Van het Schip AD, Van Steenbergen MJ, Zielhuis SW, Kroon-Batenburg LM, Van de Weert M, et al. Influence of neutron irradiation on holmium acetylacetonate loaded poly(l-lactic acid) microspheres. Biomaterials. 2002;23:1831–9. doi: 10.1016/S0142-9612(01)00309-X.
    1. Nijsen F, Rook D, Brandt C, Meijer R, Dullens H, Zonnenberg B, et al. Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study. Eur J Nucl Med. 2001;28:743–9. doi: 10.1007/s002590100518.
    1. Nijsen JFW. Radioactive holmium poly(l-lactic acid) microspheres for treatment of hepatic malignancies: efficacy in rabbits. PhD thesis Utrecht University, The Netherlands 2001, pp. 109–122. ISBN 90-393-2685-1.
    1. Vente MA, Hobbelink MG, Van het Schip AD, Zonnenberg BA, Nijsen JF. Radionuclide liver cancer therapies: from concept to current clinical status. Anticancer Agents Med Chem. 2007;7:441–59. doi: 10.2174/187152007781058569.
    1. Nijsen JFW, Zonnenberg BA, Woittiez JR, Rook DW, Swildens-Van Woudenberg IA, Van Rijk PP, et al. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704. doi: 10.1007/s002590050440.
    1. Zielhuis SW, Nijsen JFW, Figueiredo R, Feddes B, Vredenberg AM, Van het Schip AD, et al. Surface characteristics of holmium-loaded poly(l-lactic acid) microspheres. Biomaterials. 2005;26:925–32. doi: 10.1016/j.biomaterials.2004.03.028.
    1. Boxenbaum H. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin. J Pharmacokinet Biopharm. 1980;8:165–76. doi: 10.1007/BF01065191.
    1. Dondelinger RF, Ghysels MP, Brisbois D, Donkers E, Snaps FR, Saunders J, et al. Relevant radiological anatomy of the pig as a training model in interventional radiology. Eur Radiol. 1998;8:1254–73. doi: 10.1007/s003300050545.
    1. Faustini M, Munari E, Colombani C, Russo V, Maffeo G, Vigo D. Haematology and plasma biochemistry of Stamboek pre-pubertal gilts in Italy: reference values. J Vet Med A Physiol Pathol Clin Med. 2000;47:525–32.
    1. Hannon JP, Bossone CA, Wade CE. Normal physiological values for conscious pigs used in biomedical research. Lab Anim Sci. 1990;40:293–8.
    1. Odink J, Smeets JF, Visser IJ, Sandman H, Snijders JM. Hematological and clinicochemical profiles of healthy swine and swine with inflammatory processes. J Anim Sci. 1990;68:163–70.
    1. Guise HJ, Carlyle WW, Penny RH, Abbott TA, Riches HL, Hunter EJ. Gastric ulcers in finishing pigs: their prevalence and failure to influence growth rate. Vet Rec. 1997;141:563–6.
    1. Sidikou DI, Banga-Mboko H, Tamboura HH, Hornick JL, Remy B, Beckers JF. Correlation between a proteolytic method and a radioimmunoassay for porcine serum pepsinogen concentrations. Res Vet Sci. 2006;80:260–6. doi: 10.1016/j.rvsc.2005.06.004.
    1. Banga-Mboko H, Tamboura H, Maes D, Traoré H, Youssao I, Sangild PT, et al. Survey of gastric lesions and blood pepsinogen levels in pigs in burkina faso. Vet Res Commun. 2003;27:595–602. doi: 10.1023/A:1027368311808.
    1. Murthy R, Brown DB, Salem R, Meranze SG, Coldwell DM, Krishnan S, et al. Gastrointestinal complications associated with hepatic arterial yttrium-90 microsphere therapy. J Vasc Interv Radiol. 2007;18:553–61. doi: 10.1016/j.jvir.2007.02.002.
    1. Salem R, Thurston KG, Carr BI, Goin JE, Geschwindt JF. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol. 2002;13:S223–9. doi: 10.1016/S1051-0443(07)61790-4.
    1. Cromheecke M, Konings AW, Szabo BG, Hoekstra HJ. Liver tissue tolerance for irradiation: experimental and clinical investigations. Hepatogastroenterology. 2000;47:1732–40.
    1. Ingold J, Reed G, Kaplan H, Bagshaw M. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med. 1965;93:200–8.
    1. Zielhuis SW, Nijsen JFW, Seppenwoolde JH, Bakker CJG, Krijger GC, Dullens HFJ, et al. Long-term toxicity of holmium loaded poly(l-lactic acid) microspheres in rats. Biomaterials. 2007;28:4591–9. doi: 10.1016/j.biomaterials.2007.07.012.
    1. Zielhuis SW, Nijsen JFW, Krijger GC, Van het Schip AD, Hennink WE. Holmium-loaded poly(l-lactic acid) microspheres: in vitro degradation study. Biomacromolecules. 2006;7:2217–23. doi: 10.1021/bm060230r.
    1. Van Es RJ, Nijsen JF, Van het Schip AD, Dullens HF, Slootweg PJ, Koolen R. Intra-arterial embolization of head-and-neck cancer with radioactive holmium-166 poly(l-lactic acid) microspheres: an experimental study in rabbits. Int J Oral Maxillofac Surg. 2001;30:407–13. doi: 10.1054/ijom.2001.0129.
    1. Jeppsson B, Dahl EP, Fredlund PE, Stenram U, Bengmark S. Hepatic necrosis in the pig produced by transient arterial occlusion. Eur Surg Res. 1979;11:243–53. doi: 10.1159/000128072.
    1. Garrean S, Espat NJ. Yttrium-90 internal radiation therapy for hepatic malignancy. Surg Oncol. 2005;14:179–93. doi: 10.1016/j.suronc.2006.01.003.
    1. Ramsey DE, Kernagis LY, Soulen MC, Geschwind JF. Chemoembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2002;13:S211–21. doi: 10.1016/S1051-0443(07)61789-8.
    1. Leung DA, Goin JE, Sickles C, Raskay BJ, Soulen MC. Determinants of postembolization syndrome after hepatic chemoembolization. J Vasc Interv Radiol. 2001;12:321–6. doi: 10.1016/S1051-0443(07)61911-3.
    1. Salem R, Lewandowski R, Roberts C, Goin J, Thurston K, Abouljoud M, Angi C. Use of yttrium-90 glass microspheres (TheraSphere) for the treatment of unresectable hepatocellular carcinoma in patients with portal vein thrombosis. J Vasc Interv Radiol. 2004;15:335–45.
    1. Miller FH, Keppke AL, Reddy D, Huang J, Jin J, Mulcahy MF, et al. Response of liver metastases after treatment with yttrium-90 microspheres: role of size, necrosis, and PET. Am J Roentgenol. 2007;188:776–783. doi: 10.2214/AJR.06.0707.

Source: PubMed

3
구독하다