Gut microbiome in ADHD and its relation to neural reward anticipation

Esther Aarts, Thomas H A Ederveen, Jilly Naaijen, Marcel P Zwiers, Jos Boekhorst, Harro M Timmerman, Sanne P Smeekens, Mihai G Netea, Jan K Buitelaar, Barbara Franke, Sacha A F T van Hijum, Alejandro Arias Vasquez, Esther Aarts, Thomas H A Ederveen, Jilly Naaijen, Marcel P Zwiers, Jos Boekhorst, Harro M Timmerman, Sanne P Smeekens, Mihai G Netea, Jan K Buitelaar, Barbara Franke, Sacha A F T van Hijum, Alejandro Arias Vasquez

Abstract

Background: Microorganisms in the human intestine (i.e. the gut microbiome) have an increasingly recognized impact on human health, including brain functioning. Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder associated with abnormalities in dopamine neurotransmission and deficits in reward processing and its underlying neuro-circuitry including the ventral striatum. The microbiome might contribute to ADHD etiology via the gut-brain axis. In this pilot study, we investigated potential differences in the microbiome between ADHD cases and undiagnosed controls, as well as its relation to neural reward processing.

Methods: We used 16S rRNA marker gene sequencing (16S) to identify bacterial taxa and their predicted gene functions in 19 ADHD and 77 control participants. Using functional magnetic resonance imaging (fMRI), we interrogated the effect of observed microbiome differences in neural reward responses in a subset of 28 participants, independent of diagnosis.

Results: For the first time, we describe gut microbial makeup of adolescents and adults diagnosed with ADHD. We found that the relative abundance of several bacterial taxa differed between cases and controls, albeit marginally significant. A nominal increase in the Bifidobacterium genus was observed in ADHD cases. In a hypothesis-driven approach, we found that the observed increase was linked to significantly enhanced 16S-based predicted bacterial gene functionality encoding cyclohexadienyl dehydratase in cases relative to controls. This enzyme is involved in the synthesis of phenylalanine, a precursor of dopamine. Increased relative abundance of this functionality was significantly associated with decreased ventral striatal fMRI responses during reward anticipation, independent of ADHD diagnosis and age.

Conclusions: Our results show increases in gut microbiome predicted function of dopamine precursor synthesis between ADHD cases and controls. This increase in microbiome function relates to decreased neural responses to reward anticipation. Decreased neural reward anticipation constitutes one of the hallmarks of ADHD.

Conflict of interest statement

Competing Interests: JKB has been in the past 3 years a consultant / member of advisory board and/or speaker for Janssen Cilag BV, Eli Lilly, Shire, Medice, Lundbeck and Servier. He is not an employee of any of these companies, and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, royalties. BF received educational speaking fees from Merz and Shire. Commercial company NIZO provided support in the form of salaries for authors JB, HMT and SAFTH. This does not alter our adherence to PLOS ONE policies on sharing data and materials. EA, THAE, JN, MPZ, SPS, MGN, and AAV report no competing interests.

Figures

Fig 1. Potential routes in which precursors…
Fig 1. Potential routes in which precursors of monoamines could influence brain functioning.
The large neutral amino acids tryptophan, phenylalanine, and tyrosine, which are absorbed in the intestine [20], are precursors of monoamines. Tryptophan and phenylalanine are essential amino acids, meaning that they cannot be synthesized by the human body itself [21]. 5-HTP = 5-Hydroxytryptophan.
Fig 2. Microbiome sample, fMRI sample, and…
Fig 2. Microbiome sample, fMRI sample, and their overlap.
Fig 3. The strongest differentially abundant microbial…
Fig 3. The strongest differentially abundant microbial taxa for ADHD cases (n = 19) versus healthy controls (n = 77), shown in the graphical Cytoscape visualization [32].
Nodes represent taxa (node size represents average relative abundance, for both experimental groups combined), edges (dashed lines) link the different taxonomic levels. The weighed fold-change (node color) is calculated as the 2log of the ratio of the relative abundance between control and ADHD (0 = no difference between genotypes, 1 = twice as abundant in control, etcetera). In other words: yellow to red indicates an overrepresentation in control, hence an underrepresentation in ADHD, and vice versa for light- to dark blue. The significance (node border width) is expressed as the p-value of a Mann–Whitney U test, uncorrected for multiple comparisons.
Fig 4. The ADHD microbiome contains significantly…
Fig 4. The ADHD microbiome contains significantly increased levels of predicted cyclohexadienyl dehydratase (CDT; KEGG Ortholog K01713; EC:4.2.1.51), responsible for phenylalanine synthesis (Fig B in S1 Appendix).
This analysis is based on functional predictions deriving from 16S profiles of the microbiome, as performed by PICRUSt [33]. Box plots represent the relative abundance of predicted CDT, with 5–95% percentile whiskers (dots represent outliers). The significance was tested with a non-parametric MWU (* p = 0.038), Bonferroni-corrected for 15 K numbers identified.
Fig 5. fMRI results.
Fig 5. fMRI results.
A. Main effect of reward anticipation, cluster-level corrected at the whole-brain level (pFWE < 0.05). Color bars reflect T-values. B. Diagnosis effects in the anatomical region of interest (ROI) of the ventral striatum. C. Negative correlation of the microbiome function CDT (see Fig 4) with reward anticipation responses across the whole-brain (n = 28), intensity threshold at p < 0.001 uncorrected (T = 3.45). The clusters in bilateral ventral striatum (x = -11, y = 11, z = -9, cluster size = 8, p(FWE, cluster) = 0.024; x = 11, y = 6, z = -11, cluster size = 2, p(FWE, cluster) = 0.036) are significant after correcting for multiple comparisons across the search volume (cluster-level pFWE < 0.05, SVC), i.e. the anatomically defined ventral striatum shown in panel B. SVC = small volume correction. * indicates p < 0.05.

References

    1. Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, et al. Attention-deficit/hyperactivity disorder. Nature reviews disease primers. 2015:15020 doi:
    1. Faraone SV, Glatt SJ. A comparison of the efficacy of medications for adult attention-deficit/hyperactivity disorder using meta-analysis of effect sizes. The Journal of clinical psychiatry. 2010;71(6):754–63. doi: .
    1. Knutson B, Gibbs SE. Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology. 2007;191(3):813–22. doi: .
    1. Scheres A, Milham MP, Knutson B, Castellanos FX. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biological psychiatry. 2007;61(5):720–4. doi: .
    1. Strohle A, Stoy M, Wrase J, Schwarzer S, Schlagenhauf F, Huss M, et al. Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. NeuroImage. 2008;39(3):966–72. doi: .
    1. Plichta MM, Scheres A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neuroscience and biobehavioral reviews. 2014;38:125–34. doi: ; PubMed Central PMCID: PMC3989497.
    1. Hoogman M, Aarts E, Zwiers M, Slaats-Willemse D, Naber M, Onnink M, et al. Nitric oxide synthase genotype modulation of impulsivity and ventral striatal activity in adult ADHD patients and healthy comparison subjects. The American journal of psychiatry. 2011;168(10):1099–106. doi: .
    1. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biological psychiatry. 2005;57(11):1313–23. doi: .
    1. Franke B, Faraone SV, Asherson P, Buitelaar J, Bau CH, Ramos-Quiroga JA, et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Molecular psychiatry. 2012;17(10):960–87. doi: ; PubMed Central PMCID: PMC3449233.
    1. Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. Journal of the American Academy of Child and Adolescent Psychiatry. 2012;51(1):86–97 e8. doi: ; PubMed Central PMCID: PMC4321798.
    1. Sonuga-Barke EJ, Brandeis D, Cortese S, Daley D, Ferrin M, Holtmann M, et al. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. The American journal of psychiatry. 2013;170(3):275–89. doi: .
    1. Pelsser LM, Frankena K, Toorman J, Savelkoul HF, Dubois AE, Pereira RR, et al. Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): a randomised controlled trial. Lancet. 2011;377(9764):494–503. doi: .
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. Epub 2013/12/18. doi: ; PubMed Central PMCID: PMC3957428.
    1. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews Neuroscience. 2012;13(10):701–12. Epub 2012/09/13. doi: .
    1. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS pathogens. 2013;9(11):e1003726 doi: ; PubMed Central PMCID: PMC3828163.
    1. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of psychiatric research. 2008;43(2):164–74. doi: .
    1. Clayton TA. Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS letters. 2012;586(7):956–61. doi: .
    1. Gertsman I, Gangoiti JA, Nyhan WL, Barshop BA. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome. Molecular genetics and metabolism. 2015;114(3):431–7. doi: .
    1. Partty A, Kalliomaki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatric research. 2015;77(6):823–8. doi: .
    1. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science: McGraw-Hill companies; 2000.
    1. Institute of Medicine's Food and Nutrition Board. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Available from: .
    1. von Rhein D, Mennes M, van Ewijk H, Groenman AP, Zwiers MP, Oosterlaan J, et al. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives. European child & adolescent psychiatry. 2015;24(3):265–81. doi: .
    1. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry. 1997;36(7):980–8. doi: .
    1. Franke B, Vasquez AA, Veltman JA, Brunner HG, Rijpkema M, Fernandez G. Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biological psychiatry. 2010;68(6):586–8. doi: .
    1. Aarts E, Wallace DL, Dang LC, Jagust WJ, Cools R, D'Esposito M. Dopamine and the cognitive downside of a promised bonus. Psychological science. 2014;25(4):1003–9. Epub 2014/02/15. doi: ; PubMed Central PMCID: PMC4163051.
    1. Steegenga WT, Mischke M, Lute C, Boekschoten MV, Pruis MG, Lendvai A, et al. Sexually dimorphic characteristics of the small intestine and colon of prepubescent C57BL/6 mice. Biology of sex differences. 2014;5:11 doi: ; PubMed Central PMCID: PMC4169057.
    1. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64(5):731–42. doi: .
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335–6. doi: ; PubMed Central PMCID: PMC3156573.
    1. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research. 2000;28(1):27–30. ; PubMed Central PMCID: PMC102409.
    1. Pakseresht N, Alako B, Amid C, Cerdeno-Tarraga A, Cleland I, Gibson R, et al. Assembly information services in the European Nucleotide Archive. Nucleic acids research. 2014;42(Database issue):D38–43. doi: ; PubMed Central PMCID: PMC3965037.
    1. Ottman N, Smidt H, de Vos WM, Belzer C. The function of our microbiota: who is out there and what do they do? Frontiers in cellular and infection microbiology. 2012;2:104 doi: ; PubMed Central PMCID: PMC3417542.
    1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(11):2498–504. doi: ; PubMed Central PMCID: PMC403769.
    1. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature biotechnology. 2013;31(9):814–21. doi: ; PubMed Central PMCID: PMC3819121.
    1. Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biological psychiatry. 2017;81(5):411–23. doi: ; PubMed Central PMCID: PMC5285286.
    1. Biederman J, Spencer T. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biological psychiatry. 1999;46(9):1234–42. .
    1. Staller JA, Faraone SV. Targeting the dopamine system in the treatment of attention-deficit/hyperactivity disorder. Expert review of neurotherapeutics. 2007;7(4):351–62. doi: .
    1. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009;126(1):51–90. doi: .
    1. Aarts E, van Holstein M, Hoogman M, Onnink M, Kan C, Franke B, et al. Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder: a pilot study on the role of striatal dopamine. Behavioural pharmacology. 2015;26(1 and 2):227–40. Epub 2014/12/09. doi: .
    1. Antshel KM, Waisbren SE. Developmental timing of exposure to elevated levels of phenylalanine is associated with ADHD symptom expression. Journal of abnormal child psychology. 2003;31(6):565–74. .
    1. Baker GB, Bornstein RA, Rouget AC, Ashton SE, van Muyden JC, Coutts RT. Phenylethylaminergic mechanisms in attention-deficit disorder. Biological psychiatry. 1991;29(1):15–22. .
    1. Bornstein RA, Baker GB, Carroll A, King G, Wong JT, Douglass AB. Plasma amino acids in attention deficit disorder. Psychiatry research. 1990;33(3):301–6. .
    1. Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder. PloS one. 2016;11(3):e0151100 doi: ; PubMed Central PMCID: PMC4777504.
    1. Stevenson M, McNaughton N. A comparison of phenylketonuria with attention deficit hyperactivity disorder: do markedly different aetiologies deliver common phenotypes? Brain research bulletin. 2013;99:63–83. doi: .
    1. Broadley KJ. The vascular effects of trace amines and amphetamines. Pharmacology & therapeutics. 2010;125(3):363–75. doi: .
    1. Fernstrom JD. Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino acids. 2013;45(3):419–30. doi: .
    1. Biederman J, Mick E, Faraone SV. Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. The American journal of psychiatry. 2000;157(5):816–8. doi: .
    1. Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Frontiers in microbiology. 2016;7:1204 doi: ; PubMed Central PMCID: PMC4990546.
    1. Yang C, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Scientific reports. 2017;7:45942 doi: ; PubMed Central PMCID: PMC5377462.

Source: PubMed

3
구독하다