Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives

Peter F Surai, Peter F Surai

Abstract

Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.

Keywords: NF-κB; Nrf2; antioxidant; gut; silibinin; silybin; silymarin; vitagenes.

References

    1. Comelli M.C., Mengs U., Prosdocimi M., Schneider C. Toward the definition of the mechanism of action of silymarin: Activities related to cellular protection from toxic damage induced by chemotherapy. Integr. Cancer Ther. 2007;6:120–129. doi: 10.1177/1534735407302349.
    1. Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K.
    1. Křen V., Marhol P., Purchartová K., Gabrielová E., Modrianský M. Biotransformation of silybin and its congeners. Curr. Drug MeTable. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507.
    1. Hackett E.S., Twedt D.C., Gustafson D.L. Milk thistle and its derivative compounds: A review of opportunities for treatment of liver disease. J. Vet. Intern. Med. 2013;27:10–16. doi: 10.1111/jvim.12002.
    1. Post-White J., Ladas E.J., Kelly K.M. Advances in the use of milk thistle (Silybum marianum) Integr. Cancer Ther. 2007;6:104–109. doi: 10.1177/1534735407301632.
    1. Loguercio C., Federico A., Trappoliere M., Tuccillo C., de Sio I., di Leva A., Niosi M., D’Auria M.V., Capasso R., del Vecchio Blanco C., et al. The effect of a silybin-vitamin E-phospholipid complex on nonalcoholic fatty liver disease: A pilot study. Dig. Dis. Sci. 2007;52:2387–2395. doi: 10.1007/s10620-006-9703-2.
    1. Federico A., Niosi M., del Vecchio Blanco C., Loguercio C. Emerging drugs for non-alcoholic fatty liver disease. Exp. Opin. Emerg. Drugs. 2008;13:145–158. doi: 10.1517/14728214.13.1.145.
    1. Trappoliere M., Caligiuri A., Schmid M., Bertolani C., Failli P., Vizzutti F., Novo E., di Manzano C., Marra F., Loguercio C., et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J. Hepatol. 2009;50:1102–1111. doi: 10.1016/j.jhep.2009.02.023.
    1. Loguercio C., Festi D. Silybin and the liver: From basic research to clinical practice. World J. Gastroenterol. 2011;17:2288–2301. doi: 10.3748/wjg.v17.i18.2288.
    1. Loguercio C., Andreone P., Brisc C., Brisc M.C., Bugianesi E., Chiaramonte M., Cursaro C., Danila M., de Sio I., Floreani A., et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: A randomized controlled trial. Free Radic. Biol. Med. 2012;52:1658–1665. doi: 10.1016/j.freeradbiomed.2012.02.008.
    1. Stiuso P., Scognamiglio I., Murolo M., Ferranti P., de Simone C., Rizzo M.R., Tuccillo C., Caraglia M., Loguercio C., Federico A. Serum oxidative stress markers and lipidomic profile to detect NASH patients responsive to an antioxidant treatment: A pilot study. Oxid. Med. Cell Longev. 2014;2014:169216. doi: 10.1155/2014/169216.
    1. Testino G., Leone S., Ansaldi F., Borro P. Silymarin and S-adenosyl-l-methionine (SAMe): Two promising pharmacological agents in case of chronic alcoholic hepathopathy. A review and a point of view. Minerva Gastroenterol. Dietol. 2013;59:341–356.
    1. Milić N., Milosević N., Suvajdzić L., Zarkov M., Abenavoli L. New therapeutic potentials of milk thistle (Silybum marianum) Nat. Prod. Commun. 2013;8:1801–1810.
    1. Zholobenko A., Modriansky M. Silymarin and its constituents in cardiac preconditioning. Fitoterapia. 2014;97:122–132. doi: 10.1016/j.fitote.2014.05.016.
    1. Madrigal-Santillán E., Madrigal-Bujaidar E., Álvarez-González I., Sumaya-Martínez M.T., Gutiérrez-Salinas J., Bautista M., Morales-González Á., García-Luna Y., González-Rubio M., Aguilar-Faisal J.L., et al. Review of natural products with hepatoprotective effects. World J. Gastroenterol. 2014;20:14787–14804. doi: 10.3748/wjg.v20.i40.14787.
    1. Vargas-Mendoza N., Madrigal-Santillán E., Morales-González A., Esquivel-Soto J., Esquivel-Chirino C., García-Luna Y., González-Rubio M., Gayosso-de-Lucio J.A., Morales-González J.A. Hepatoprotective effect of silymarin. World J. Hepatol. 2014;6:144–149. doi: 10.4254/wjh.v6.i3.144.
    1. Mohd Fozi N.F., Mazlan M., Shuid A.N., Isa Naina M. Milk thistle: A future potential anti-osteoporotic and fracture healing agent. Curr. Drug Targets. 2013;14:1659–1666. doi: 10.2174/13894501113146660222.
    1. Surai P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. (Berl.) 2014;98:19–31. doi: 10.1111/jpn.12070.
    1. Hollman P.C. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch. Biochem. Biophys. 2014;559:100–105. doi: 10.1016/j.abb.2014.04.013.
    1. Li L., Zeng J., Gao Y., He D. Targeting silibinin in the antiproliferative pathway. Expert Opin. Investig. Drugs. 2010;19:243–255. doi: 10.1517/13543780903533631.
    1. Wen Z., Dumas T.E., Schrieber S.J., Hawke R.L., Fried M.W., Smith P.C. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 2008;36:65–72. doi: 10.1124/dmd.107.017566.
    1. Zhu H.J., Brinda B.J., Chavin K.D., Bernstein H.J., Patrick K.S., Markowitz J.S. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: A dose escalation study. Drug Metab. Dispos. 2013;41:1679–1685. doi: 10.1124/dmd.113.052423.
    1. Wu J.W., Lin L.C., Hung S.C., Chi C.W., Tsai T.H. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J. Pharm. Biomed. Anal. 2007;45:635–641. doi: 10.1016/j.jpba.2007.06.026.
    1. Lorenz D., Lucker P.W., Mennicke W.H., Wetzelsberger N. Pharmacokinetic studies with silymarin in human serum and bile. Methods Find. Exp. Clin. Pharmacol. 1984;6:655–661.
    1. Barzaghi N., Crema F., Gatti G., Pifferi G., Perucca E. Pharmokinetic studies in IdB 1016, a silybin-phosphatidylcholine complex, in healthy human subjects. Eur. J. Drug. Metab. Pharmacokinet. 1990;15:333–338. doi: 10.1007/BF03190223.
    1. Flory P.J., Krug G., Lorenz D., Mennicke W.H. Studies on elimination of silymarin in cholecystectomized patients. I. Biliary and renal elimination after a single oral dose. Plant. Med. 1980;38:227–237. doi: 10.1055/s-2008-1074867.
    1. Zhao J., Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: Implications in cancer chemoprevention. Carcinogenesis. 1999;20:2101–2108. doi: 10.1093/carcin/20.11.2101.
    1. Han Y.H., Lou H.X., Ren D.M., Sun L.R., Ma B., Ji M. Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J. Pharm. Biomed. Anal. 2004;34:1071–1078. doi: 10.1016/j.jpba.2003.12.002.
    1. D’Andrea V., Perez L.M., Sanchez Pozzi E.J. Inhibition of rat liver UDP glucuronosyltransferase by silymarin and the metabolite silibinin-glucuronide. Life Sci. 2005;77:683–692. doi: 10.1016/j.lfs.2005.01.011.
    1. Weyhenmeyer R., Mascher H., Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992;30:134–138.
    1. Calani L., Brighenti F., Bruni R., del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20:40–46. doi: 10.1016/j.phymed.2012.09.004.
    1. Rickling B., Hans B., Kramarczyk R., Krumbiegel G., Weyhenmeyer R. Two high-performance liquid chromatographic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Appl. 1995;670:267–277. doi: 10.1016/0378-4347(95)00168-9.
    1. Surai P.F., Fisinin V.I. Antioxidant Systems of the Body: From Vitamin E to Polyphenols and Beyond; Proceedings of the 35th Western Nutrition Conference; Edmonton, Canada. 24–25 September 2014; pp. 265–277.
    1. Surai P.F. Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press; Nottingham, UK: 2002.
    1. Surai P.F. Selenium in Nutrition and Health. Nottingham University Press; Nottingham, UK: 2006.
    1. Surai P.F., Fisinin V.I. Ill Health effects of food lipids: Consequences of inadequate food processing, storage and cooking. In: de Meester F., Zibadi S., Watson R.R., editors. Modern Dietary Fat Intakes in Disease Promotion. Springer; New York, NY, USA: 2010. pp. 251–274.
    1. Fotina A.A., Fisinin V.I., Surai P.F. Recent developments in usage of natural antioxidants to improve chicken meat production and quality. Bulg. J. Agric. Sci. 2013;19:889–896.
    1. Dehmlow C., Erhard J., de Groot H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology. 1996;23:749–754. doi: 10.1002/hep.510230415.
    1. Dehmlow C., Murawski N., de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci. 1996;58:1591–1600. doi: 10.1016/0024-3205(96)00134-8.
    1. Varga Z., Seres I., Nagy E., Ujhelyi L., Balla G., Balla J., Antus S. Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro. Phytomedicine. 2006;13:85–93. doi: 10.1016/j.phymed.2004.06.019.
    1. Fu H., Lin M., Muroya Y., Hata K., Katsumura Y., Yokoya A., Shikazono N., Hatano Y. Free radical scavenging reactions and antioxidant activities of silybin: Mechanistic aspects and pulse radiolytic studies. Free Radic. Res. 2009;43:887–897. doi: 10.1080/10715760903136996.
    1. Yin F., Liu J., Ji X., Wang Y., Zidichouski J., Zhang J. Silibinin: A novel inhibitor of Aβ aggregation. Neurochem. Int. 2011;58:399–403. doi: 10.1016/j.neuint.2010.12.017.
    1. Cristofalo R., Bannwart-Castro C.F., Magalhães C.G., Borges V.T., Peraçoli J.C., Witkin S.S., Peraçoli M.T. Silibinin attenuates oxidative metabolism and cytokine production by monocytes from preeclamptic women. Free Radic. Res. 2013;47:268–275. doi: 10.3109/10715762.2013.765951.
    1. Domitrović R., Jakovac H., Marchesi V.V., Blažeković B. Resolution of liver fibrosis by isoquinoline alkaloid berberine in CCl4-intoxicated mice is mediated by suppression of oxidative stress and upregulation of MMP-2 expression. J. Med. Food. 2013;16:518–528. doi: 10.1089/jmf.2012.0175.
    1. Köksal E., Gülçin I., Beyza S., Sarikaya O., Bursal E. In vitro antioxidant activity of silymarin. J. Enzyme Inhib. Med. Chem. 2009;24:395–405. doi: 10.1080/14756360802188081.
    1. Asghar Z., Masood Z. Evaluation of antioxidant properties of silymarin and its potential to inhibit peroxyl radicals in vitro. Pak. J. Pharm. Sci. 2008;21:249–254.
    1. Dvorak Z., Kosina P., Walterova D., Simanek V., Bachleda P., Ulrichova J. Primary cultures of human hepatocytes as a tool in cytotoxicity studies: Cell protection against model toxins by flavonolignans obtained from Silybum marianum. Toxicol. Lett. 2003;137:201–212. doi: 10.1016/S0378-4274(02)00406-X.
    1. Crocenzi F.A., Mottino A.D., Roma M.G. Regulation of synthesis and trafficking of canalicular transporters and its alteration in acquired hepatocellular cholestasis. Experimental therapeutic strategies for its prevention. Curr. Med. Chem. 2004;11:501–524. doi: 10.2174/0929867043455918.
    1. Blaising J., Lévy P.L., Gondeau C., Phelip C., Varbanov M., Teissier E., Ruggiero F., Polyak S.J., Oberlies N.H., Ivanovic T., et al. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol. 2013;15:1866–1882.
    1. Colturato C.P., Constantin R.P., Maeda A.S., Jr., Constantin R.P., Yamamoto N.S., Bracht A., Ishii-Iwamoto E.L., Constantin J. Metabolic effects of silibinin in the rat liver. Chem. Biol. Interact. 2012;195:119–132. doi: 10.1016/j.cbi.2011.11.006.
    1. Lin M.T., Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443:787–795. doi: 10.1038/nature05292.
    1. Sekine S., Ichijo H. Mitochondrial proteolysis: Its emerging roles in stress responses. Biochim. Biophys. Acta. 2015;1850:274–280. doi: 10.1016/j.bbagen.2014.10.012.
    1. Calabrese V., Cornelius C., Stella A.M., Calabrese E.J. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: Role of hormesis and vitagenes. Neurochem. Res. 2010;35:1880–1915. doi: 10.1007/s11064-010-0307-z.
    1. Rolo A.P., Oliveira P.J., Moreno A.J., Palmeira C.M. Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC. Hepatol. Res. 2003;26:217–224. doi: 10.1016/S1386-6346(03)00108-6.
    1. Zhou B., Wu L.J., Tashiro S., Onodera S., Uchiumi F., Ikejima T. Silibinin protects rat cardiac myocyte from isoproterenol-induced DNA damage independent on regulation of cell cycle. Biol. Pharm. Bull. 2006;29:1900–1905. doi: 10.1248/bpb.29.1900.
    1. Detaille D., Sanchez C., Sanz N., Lopez-Novoa J.M., Leverve X., El-Mir M.Y. Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci. 2008;82:1070–1076. doi: 10.1016/j.lfs.2008.03.007.
    1. Ligeret H., Brault A., Vallerand D., Haddad Y., Haddad P.S. Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 2008;115:507–514. doi: 10.1016/j.jep.2007.10.024.
    1. Gabrielová E., Jabůrek M., Gažák R., Vostálová J., Ježek J., Křen V., Modrianský M. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J. Bioenerg. Biomembr. 2010;42:499–509. doi: 10.1007/s10863-010-9319-2.
    1. Grattagliano I., Diogo C.V., Mastrodonato M., de Bari O., Persichella M., Wang D.Q., Liquori A., Ferri D., Carratù M.R., Oliveira P.J., et al. A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World J. Gastroenterol. 2013;19:3007–3017. doi: 10.3748/wjg.v19.i20.3007.
    1. Serviddio G., Bellanti F., Giudetti A.M., Gnoni G.V., Petrella A., Tamborra R., Romano A.D., Rollo T., Vendemiale G., Altomare E. A silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis. J. Pharmacol. Exp. Ther. 2010;332:922–932. doi: 10.1124/jpet.109.161612.
    1. Zhu S.Y., Dong Y., Tu J., Zhou Y., Zhou X.H., Xu B. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with d-galactose. Pharmacogn. Mag. 2014;10:S92–S99. doi: 10.4103/0973-1296.127353.
    1. Geed M., Garabadu D., Ahmad A., Krishnamurthy S. Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol. Biochem. Behav. 2014;117:92–103. doi: 10.1016/j.pbb.2013.12.008.
    1. Mazzio E.A., Harris N., Soliman K.F. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Plant. Med. 1998;64:603–606. doi: 10.1055/s-2006-957530.
    1. Sangeetha N., Viswanathan P., Balasubramanian T., Nalini N. Colon cancer chemopreventive efficacy of silibinin through perturbation of xenobiotic metabolizing enzymes in experimental rats. Eur. J. Pharmacol. 2012;674:430–438. doi: 10.1016/j.ejphar.2011.11.008.
    1. Tuorkey M.J., El-Desouki N.I., Kamel R.A. Cytoprotective Effect of Silymarin against Diabetes-Induced Cardiomyocyte Apoptosis in Diabetic Rats. Biomed. Environ. Sci. 2015;28:36–43.
    1. Fan L., Ma Y., Liu Y., Zheng D., Huang G. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur. J. Pharmacol. 2014;743:79–88. doi: 10.1016/j.ejphar.2014.09.019.
    1. Doehner W., Landmesser U. Xanthine oxidase and uric acid in cardiovascular disease: Clinical impact and therapeutic options. Semin. Nephrol. 2011;31:433–440. doi: 10.1016/j.semnephrol.2011.08.007.
    1. Varga Z., Ujhelyi L., Kiss A., Balla J., Czompa A., Antus S. Effect of silybin on phorbol myristate actetate-induced protein kinase C translocation, NADPH oxidase activity and apoptosis in human neutrophils. Phytomedicine. 2004;11:206–212. doi: 10.1078/0944-7113-00358.
    1. Pauff J.M., Hille R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J. Nat. Prod. 2009;72:725–731. doi: 10.1021/np8007123.
    1. Bedard K., Krause K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005.
    1. Muthumani M., Prabu S.M. Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovasc. Toxicol. 2014;14:83–97. doi: 10.1007/s12012-013-9227-x.
    1. Prabu S.M., Muthumani M. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats. Mol. Biol. Rep. 2012;39:11201–11216. doi: 10.1007/s11033-012-2029-6.
    1. Khazim K., Gorin Y., Cavaglieri R.C., Abboud H.E., Fanti P. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am. J. Physiol. Renal. Physiol. 2013;305:F691–F700. doi: 10.1152/ajprenal.00028.2013.
    1. Ingawale D.K., Mandlik S.K., Naik S.R. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): A critical discussion. Environ. Toxicol. Pharmacol. 2014;37:118–133. doi: 10.1016/j.etap.2013.08.015.
    1. Rashid K., Sinha K., Sil P.C. An update on oxidative stress-mediated organ pathophysiology. Food Chem. Toxicol. 2013;62:584–600. doi: 10.1016/j.fct.2013.09.026.
    1. Muthumani M., Prabu S.M. Silibinin potentially protects arsenic-induced oxidative hepatic dysfunction in rats. Toxicol. Mech. Methods. 2012;22:277–288. doi: 10.3109/15376516.2011.647113.
    1. Soria E.A., Eynard A.R., Bongiovanni G.A. Modulation of early stress-related biomarkers in cytoplasm by the antioxidants silymarin and quercetin using a cellular model of acute arsenic poisoning. Basic Clin. Pharmacol. Toxicol. 2010;107:982–987. doi: 10.1111/j.1742-7843.2010.00615.x.
    1. Jain A., Yadav A., Bozhkov A.I., Padalko V.I., Flora S.J. Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol. Environ. Saf. 2011;74:607–614. doi: 10.1016/j.ecoenv.2010.08.002.
    1. Manibusan M.K., Odin M., Eastmond D.A. Postulated carbon tetrachloride mode of action: A review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2007;25:185–209. doi: 10.1080/10590500701569398.
    1. Raj S., Gothandam K.M. Hepatoprotective effect of polyphenols rich methanolic extract of Amorphophallus commutatus var. wayanadensis against CCl4 induced hepatic injury in swiss albino mice. Food Chem. Toxicol. 2014;67:105–112.
    1. Alkreathy H.M., Khan R.A., Khan M.R., Sahreen S. CCl4 induced genotoxicity and DNA oxidative damages in rats: Hepatoprotective effect of Sonchus arvensis. BMC Complement. Altern. Med. 2014;14:452. doi: 10.1186/1472-6882-14-452.
    1. Krishnappa P., Venkatarangaiah K., Shivamogga V., Rajanna S.K., Prakash K., Gupta R. Antioxidant and prophylactic effects of Delonix elata L., stem bark extracts, and flavonoid isolated quercetin against carbon tetrachloride-induced hepatotoxicity in rats. Biomed. Res. Int. 2014;2014 doi: 10.1155/2014/507851.
    1. Shaker E., Mahmoud H., Mnaa S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol. 2010;48:803–806. doi: 10.1016/j.fct.2009.12.011.
    1. Shine V.J., Latha P.G., Suja S.N., Anuja G.I., Raj G., Rajasekharan S.N. Ameliorative effect of alkaloid extract of Cyclea peltata (Poir.) Hook. f. & Thoms. Roots (ACP) on APAP/CCl4 induced liver toxicity in Wistar rats and in vitro free radical scavenging property. Asian Pac. J. Trop. Biomed. 2014;4:143–151.
    1. Al-Harbi N.O., Imam F., Nadeem A., Al-Harbi M.M., Iqbal M., Ahmad S.F. Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin. Int. Immunopharmacol. 2014;21:383–388. doi: 10.1016/j.intimp.2014.05.014.
    1. Chang H.C., Chiu Y.W., Lin Y.M., Chen R.J., Lin J.A., Tsai F.J., Tsai C.H., Kuo Y.C., Liu J.Y., Huang C.Y. Herbal supplement attenuation of cardiac fibrosis in rats with CCl4-induced liver cirrhosis. Chin. J. Physiol. 2014;57:41–47. doi: 10.4077/CJP.2014.BAB147.
    1. Abbas A.T., El-Shitany N.A., Shaala L.A., Ali S.S., Azhar E.I., Abdel-Dayem U.A., Youssef D.T. Red Sea Suberea mollis Sponge Extract Protects against CCl4-Induced Acute Liver Injury in Rats via an Antioxidant Mechanism. Evid. Based Complement. Alternat. Med. 2014;2014:745606. doi: 10.1155/2014/745606.
    1. Li C.C., Hsiang C.Y., Wu S.L., Ho T.Y. Identification of novel mechanisms of silymarin on the carbon, tetrachloride-induced liver fibrosis in mice by nuclear factor-κB bioluminescent imaging-guided transcriptomic analysis. Food Chem. Toxicol. 2012;50:1568–1575. doi: 10.1016/j.fct.2012.02.025.
    1. Jia R., Cao L., Du J., Xu P., Jeney G., Yin G. The protective effect of silymarin on the carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio) Vitro Cell Dev. Biol. Anim. 2013;49:155–161. doi: 10.1007/s11626-013-9587-3.
    1. Surai P.F., Dvorska Y.E. Effect of mycotoxins on antioxidant status and immunity. In: Diaz D., editor. The Mycotoxin Blue Book. Nottingham University Press; Nottingham, UK: 2005. pp. 93–137.
    1. Sorrenti V., di Giacomo C., Acquaviva R., Barbagallo I., Bognanno M., Galvano F. Toxicity of ochratoxin A and its modulation by antioxidants: A review. Toxins (Basel) 2013;5:1742–1766. doi: 10.3390/toxins5101742.
    1. Wu Q.H., Wang X., Yang W., Nüssler A.K., Xiong L.Y., Kuča K., Dohnal V., Zhang X.J., Yuan Z.H. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 2014;88:1309–1326. doi: 10.1007/s00204-014-1280-0.
    1. Essid E., Dernawi Y., Petzinger E. Apoptosis induction by OTA and TNF-α in cultured primary rat hepatocytes and prevention by silibinin. Toxins (Basel) 2012;4:1139–1156. doi: 10.3390/toxins4111139.
    1. Al-Anati L., Essid E., Reinehr R., Petzinger E. Silibinin protects OTA-mediated TNF-alpha release from perfused rat livers and isolated rat Kupffer cells. Mol. Nutr. Food Res. 2009;53:460–466. doi: 10.1002/mnfr.200800110.
    1. Shyamal S., Latha P.G., Suja S.R., Shine V.J., Anuja G.I., Sini S., Pradeep S., Shikha P., Rajasekharan S. Hepatoprotective effect of three herbal extracts on aflatoxin B1-intoxicated rat liver. Singapore Med. J. 2010;51:326–331.
    1. Sozmen M., Devrim A.K., Tunca R., Bayezit M., Dag S., Essiz D. Protective effects of silymarin on fumonisin B1-induced hepatotoxicity in mice. J. Vet. Sci. 2014;15:51–60. doi: 10.4142/jvs.2014.15.1.51.
    1. Mustafa H.N., El Awdan S.A., Hegazy G.A. Protective role of antioxidants on thioacetamide-induced acute hepatic encephalopathy: Biochemical and ultrastructural study. Tissue Cell. 2013;45:350–362. doi: 10.1016/j.tice.2013.06.001.
    1. Fazal Y., Fatima S.N., Shahid S.M., Mahboob T. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity. J. Renin Angiotensin Aldosterone Syst. 2014 doi: 10.1177/1470320314545777.
    1. Kadir F.A., Kassim N.M., Abdulla M.A., Kamalidehghan B., Ahmadipour F., Yehye W.A. PASS-predicted hepatoprotective activity of Caesalpinia sappan in thioacetamide-induced liver fibrosis in rats. Sci. World J. 2014;2014:301879. doi: 10.1155/2014/301879.
    1. Singh K., Singh N., Chandy A., Manigauha A. In vivo antioxidant and hepatoprotective activity of methanolic extracts of Daucus carota seeds in experimental animals. Asian Pac. J. Trop. Biomed. 2012;2:385–388. doi: 10.1016/S2221-1691(12)60061-6.
    1. Ali S.O., Darwish H.A., Ismail NA. Modulatory effects of curcumin, silybin-phytosome and alpha-R-lipoic acid against thioacetamide-induced liver cirrhosis in rats. Chem. Biol. Interact. 2014;216:26–33. doi: 10.1016/j.cbi.2014.03.009.
    1. Dos Santos N.A., Carvalho Rodrigues M.A., Martins N.M., dos Santos A.C. Cisplatin-induced nephrotoxicity and targets of nephroprotection: An update. Arch. Toxicol. 2012;86:1233–1250. doi: 10.1007/s00204-012-0821-7.
    1. Mansour H.H., Hafez H.F., Fahmy N.M. Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J. Biochem. Mol. Biol. 2006;39:656–661. doi: 10.5483/BMBRep.2006.39.6.656.
    1. El-Awady el-S.E., Moustafa Y.M., Abo-Elmatty D.M., Radwan A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur. J. Pharmacol. 2011;650:335–341. doi: 10.1016/j.ejphar.2010.09.085.
    1. Ninsontia C., Pongjit K., Chaotham C., Chanvorachote P. Silymarin selectively protects human renal cells from cisplatin-induced cell death. Pharm. Biol. 2011;49:1082–1090. doi: 10.3109/13880209.2011.568506.
    1. Cho S.I., Lee J.E., Do N.Y. Protective effect of silymarin against cisplatin-induced ototoxicity. Int. J. Pediatr. Otorhinolaryngol. 2014;78:474–478. doi: 10.1016/j.ijporl.2013.12.024.
    1. Karki P., Lee E., Aschner M. Manganese neurotoxicity: A focus on glutamate transporters. Ann. Occup. Environ. Med. 2013;25:4. doi: 10.1186/2052-4374-25-4.
    1. Chtourou Y., Fetoui H., Sefi M., Trabelsi K., Barkallah M., Boudawara T., Kallel H., Zeghal N. Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. Biometals. 2010;23:985–996. doi: 10.1007/s10534-010-9345-x.
    1. Chtourou Y., Garoui E., Boudawara T., Zeghal N. Therapeutic efficacy of silymarin from milk thistle in reducing manganese-induced hepatic damage and apoptosis in rats. Hum. Exp. Toxicol. 2013;32:70–81. doi: 10.1177/0960327112455674.
    1. Chtourou Y., Fetoui H., Garoui M., Boudawara T., Zeghal N. Improvement of cerebellum redox states and cholinergic functions contribute to the beneficial effects of silymarin against manganese-induced neurotoxicity. Neurochem. Res. 2012;37:469–479. doi: 10.1007/s11064-011-0632-x.
    1. Chtourou Y., Garoui M., Boudawara T., Zeghal N. Protective role of silymarin against manganese-induced nephrotoxicity and oxidative stress in rat. Environ. Toxicol. 2014;29:1147–1154. doi: 10.1002/tox.21845.
    1. Perumal Vijayaraman K., Muruganantham S., Subramanian M., Shunmugiah K.P., Kasi P.D. Silymarin attenuates benzo(a)pyrene induced toxicity by mitigating ROS production, DNA damage and calcium mediated apoptosis in peripheral blood mononuclear cells (PBMC) Ecotoxicol. Environ. Saf. 2012;86:79–85. doi: 10.1016/j.ecoenv.2012.08.031.
    1. Kiruthiga P.V., Shafreen R.B., Pandian S.K., Devi K.P. Silymarin protection against major reactive oxygen species released by environmental toxins: Exogenous H2O2 exposure in erythrocytes. Basic Clin. Pharmacol. Toxicol. 2007;100:414–419. doi: 10.1111/j.1742-7843.2007.00069.x.
    1. Kiruthiga P.V., Pandian S.K., Devi K.P. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes—An in vitro study. Toxicol. Appl. Pharmacol. 2010;247:116–128. doi: 10.1016/j.taap.2010.06.004.
    1. Kiruthiga P.V., Karthikeyan K., Archunan G., Karutha Pandian S., Pandima Devi K. Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicol. Ind. Health. 2013 doi: 10.1177/0748233713475524.
    1. Dirks-Naylor A.J. The role of autophagy in doxorubicin-induced cardiotoxicity. Life Sci. 2013;93:913–916. doi: 10.1016/j.lfs.2013.10.013.
    1. Malekinejad H., Janbaz-Acyabar H., Razi M., Varasteh S. Preventive and protective effects of silymarin on doxorubicin-induced testicular damages correlate with changes in c-myc gene expression. Phytomedicine. 2012;19:1077–1084. doi: 10.1016/j.phymed.2012.06.011.
    1. El-Shitany N.A., El-Haggar S., El-Desoky K. Silymarin prevents adriamycin-induced cardiotoxicity and nephrotoxicity in rats. Food Chem. Toxicol. 2008;46:2422–2428. doi: 10.1016/j.fct.2008.03.033.
    1. Patel N., Joseph C., Corcoran G.B., Ray S.D. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver. Toxicol. Appl. Pharmacol. 2010;245:143–152. doi: 10.1016/j.taap.2010.02.002.
    1. Rašković A., Stilinović N., Kolarović J., Vasović V., Vukmirović S., Mikov M. The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules. 2011;16:8601–8613. doi: 10.3390/molecules16108601.
    1. Galicia-Moreno M., Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev. Gastroenterol. Mex. 2014;79:135–144.
    1. Song Z., Deaciuc I., Song M., Lee D.Y., Liu Y., Ji X., McClain C. Silymarin protects against acute ethanol-induced hepatotoxicity in mice. Alcohol. Clin. Exp. Res. 2006;30:407–413. doi: 10.1111/j.1530-0277.2006.00063.x.
    1. Zhang B., Buya M., Qin W., Sun C., Cai H., Xie Q., Xu B., Wu Y. Anthocyanins from Chinese bayberry extract activate transcription factor Nrf2 in β cells and negatively regulate oxidative stress-induced autophagy. J. Agric. Food Chem. 2013;61:8765–8772. doi: 10.1021/jf4012399.
    1. Das S.K., Mukherjee S. Biochemical and immunological basis of silymarin effect, a milk thistle (Silybum marianum) against ethanol-induced oxidative damage. Toxicol. Mech. Methods. 2012;22:409–413. doi: 10.3109/15376516.2012.673090.
    1. Gupta Y.K., Sharma M., Chaudhary G. Pyrogallolinduced hepatotoxicity in rats: A model to evaluate antioxidant hepatoprotective agents. Methods Find. Exp. Clin. Pharmacol. 2002;24:497–500. doi: 10.1358/mf.2002.24.8.705070.
    1. Upadhyay G., Kumar A., Singh M.P. Effect of silymarin on pyrogallol- and rifampicin-induced hepatotoxicity in mouse. Eur. J. Pharmacol. 2007;565:190–201. doi: 10.1016/j.ejphar.2007.03.004.
    1. Upadhyay G., Tiwari M.N., Prakash O., Jyoti A., Shanker R., Singh M.P. Involvement of multiple molecular events in pyrogallol-induced hepatotoxicity and silymarin-mediated protection: Evidence from gene expression profiles. Food Chem. Toxicol. 2010;48:1660–1670. doi: 10.1016/j.fct.2010.03.041.
    1. Razavi-Azarkhiavi K., Ali-Omrani M., Solgi R., Bagheri P., Haji-Noormohammadi M., Amani N., Sepand M.R. Silymarin alleviates bleomycin-induced pulmonary toxicity and lipid peroxidation in mice. Pharm. Biol. 2014;52:1267–1271. doi: 10.3109/13880209.2014.889176.
    1. Taghiabadi E., Imenshahidi M., Abnous K., Mosafa F., Sankian M., Memar B., Karimi G. Protective Effect of Silymarin against Acrolein-Induced Cardiotoxicity in Mice. Evid. Based Complement. Alternat. Med. 2012;2012:352091. doi: 10.1155/2012/352091.
    1. Pradeep K., Mohan C.V., Gobianand K., Karthikeyan S. Silymarin modulates the oxidant-antioxidant imbalance during diethylnitrosamine induced oxidative stress in rats. Eur. J. Pharmacol. 2007;560:110–116. doi: 10.1016/j.ejphar.2006.12.023.
    1. Nabavi S.M., Nabavi S.F., Moghaddam A.H., Setzer W.N., Mirzaei M. Effect of silymarin on sodium fluoride-induced toxicity and oxidative stress in rat cardiac tissues. An. Acad. Bras. Cienc. 2012;84:1121–1126. doi: 10.1590/S0001-37652012005000056.
    1. Sherif I.O., Al-Gayyar M.M. Antioxidant, anti-inflammatory and hepatoprotective effects of silymarin on hepatic dysfunction induced by sodium nitrite. Eur. Cytokine Netw. 2013;24:114–121.
    1. Mateen S., Raina K., Agarwal R. Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer. Nutr. Cancer. 2013;65:3–11. doi: 10.1080/01635581.2013.785004.
    1. Deep G., Agarwal R. Targeting tumor microenvironment with silibinin: Promise and potential for a translational cancer chemopreventive strategy. Curr. Cancer Drug Targets. 2013;13:486–499. doi: 10.2174/15680096113139990041.
    1. Ting H., Deep G., Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J. 2013;15:707–716. doi: 10.1208/s12248-013-9486-2.
    1. Kostek H., Szponar J., Tchórz M., Majewska M., Lewandowska-Stanek H. Silibinin and its hepatoprotective action from the perspective of a toxicologist. Przegl. Lek. 2012;69:541–543.
    1. Féher J., Lengyel G. Silymarin in the prevention and treatment of liver diseases and primary liver cancer. Curr. Pharm. Biotechnol. 2012;13:210–217. doi: 10.2174/138920112798868818.
    1. Vaid M., Katiyar S.K. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.) (Review) Int. J. Oncol. 2010;36:1053–1060.
    1. Kim N.C., Graf T.N., Sparacino C.M., Wani M.C., Wall M.E. Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum. marianum) Org. Biomol. Chem. 2003;1:1684–1689. doi: 10.1039/b300099k.
    1. Hoh C., Boocock D., Marczylo T., Singh R., Berry D.P., Dennison A.R., Hemingway D., Miller A., West K., Euden S., et al. Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin. Cancer Res. 2006;12:2944–2950. doi: 10.1158/1078-0432.CCR-05-2724.
    1. Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008;476:107–112. doi: 10.1016/j.abb.2008.01.028.
    1. Bell J.R., Donovan J.L., Wong R., Waterhouse A.L., German J.B., Walzem R.L., Kasim-Karakas S.E. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am. J. Clin. Nutr. 2000;71:103–108.
    1. Lapidot T., Harel S., Granit R., Kanner J. Bioavailability of red wine anthocyanins as detected in human urine. J. Agric. Food Chem. 1998;46:4297–4302. doi: 10.1021/jf980007o.
    1. Hu M.-L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang. Gung Med. J. 2011;34:449–460.
    1. Howard A.N., Constamble B.J. The metabolism of adrenocorticotrophic hormone and ascorbic acid in the chick. Biochem. J. 1958;69:501–505.
    1. McKee J.S., Harrison P.C., Riskowski G.L. Effects of supplemental ascorbic acid on the energy conversion of broiler chicks during heat stress and feed withdrawal. Poultry Sci. 1997;76:1278–1286. doi: 10.1093/ps/76.9.1278.
    1. Brenes A., Viveros A., Goni I., Centeno C., Sayago-Ayerdi S.G., Arija I., Saura-Calixto F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poultry Sci. 2008;87:307–316. doi: 10.3382/ps.2007-00297.
    1. Willemsen H., Swennen Q., Everaert N., Geraert P.A., Mercier Y., Stinckens A., Decuypere E., Buyse J. Effects of dietary supplementation of methionine and its hydroxy analog dl-2-hydroxy-4-methylthio butanoic acid on growth performance, plasma hormone levels, and the redox status of broiler chickens exposed to high temperatures. Poultry Sci. 2011;90:2311–2320. doi: 10.3382/ps.2011-01353.
    1. Benzie I.F., Szeto Y.T., Strain J.J., Tomlinson B. Consumption of green tea causes rapid increase in plasma antioxidant power in humans. Nutr. Cancer. 1999;34:83–87. doi: 10.1207/S15327914NC340112.
    1. Halliwell B., Rafter J., Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005;81:268S–276S.
    1. Lim R., Morwood C.J., Barker G., Lappas M. Effect of silibinin in reducing inflammatory pathways in in vitro and in vivo models of infection-induced preterm birth. PLoS One. 2014;9:e92505. doi: 10.1371/journal.pone.0092505.
    1. Yan L.J. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014;2:165–169. doi: 10.1016/j.redox.2014.01.002.
    1. Ma Q., He X. Molecular basis of electrophilic and oxidative defense: Promises and perils of Nrf2. Pharmacol. Rev. 2012;64:1055–1081. doi: 10.1124/pr.110.004333.
    1. Majzunova M., Dovinova I., Barancik M., Chan J.Y. Redox signaling in pathophysiology of hypertension. J. Biomed. Sci. 2013;18:69. doi: 10.1186/1423-0127-20-69.
    1. Song P., Zou M.H. Redox regulation of endothelial cell fate. Cell Mol. Life Sci. 2014;71:3219–3239. doi: 10.1007/s00018-014-1598-z.
    1. Kweider N., Huppertz B., Kadyrov M., Rath W., Pufe T., Wruck C.J. A possible protective role of Nrf2 in preeclampsia. Ann. Anat. 2014;196:268–277. doi: 10.1016/j.aanat.2014.04.002.
    1. Lushchak V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011;153:175–190. doi: 10.1016/j.cbpc.2010.10.004.
    1. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320.
    1. Van der Wijst M.G., Brown R., Rots M.G. Nrf2, the master redox switch: The Achilles’ heel of ovarian cancer? Biochim. Biophys. Acta. 2014;1846:494–509.
    1. Tang W., Jiang Y.F., Ponnusamy M., Diallo M. Role of Nrf2 in chronic liver disease. World J. Gastroenterol. 2014;20:13079–13087. doi: 10.3748/wjg.v20.i36.13079.
    1. Howden R. Nrf2 and cardiovascular defense. Oxid. Med. Cell Longev. 2013:104308.
    1. Vriend J., Reiter R.J. The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell. Endocrinol. 2015;401:213–220. doi: 10.1016/j.mce.2014.12.013.
    1. Keum Y.S., Choi B.Y. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules. 2014;19:10074–10089. doi: 10.3390/molecules190710074.
    1. Choi B.H., Kang K.S., Kwak M.K. Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules. 2014;19:12727–12759. doi: 10.3390/molecules190812727.
    1. Bhakkiyalakshmi E., Sireesh D., Rajaguru P., Paulmurugan R., Ramkumar K.M. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacol. Res. 2015;91:104–114. doi: 10.1016/j.phrs.2014.10.004.
    1. Lee B.H., Hsu W.H., Hsu Y.W., Pan T.M. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid. Free Radic. Biol. Med. 2013;60:7–16. doi: 10.1016/j.freeradbiomed.2013.01.030.
    1. Zhou S., Sun W., Zhang Z., Zheng Y. The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid. Med. Cell Longev. 2014;2014:260429.
    1. Lee J.M., Calkins M.J., Chan K., Kan Y.W., Johnson J.A. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 2003;278:12029–12038. doi: 10.1074/jbc.M211558200.
    1. Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014;39:199–218. doi: 10.1016/j.tibs.2014.02.002.
    1. Surh Y.J. NF-κB and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac. J. Clin. Nutr. 2008;17:269–272.
    1. Surh Y-J., Kundu J.K., Na H.-K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Plant. Med. 2008;74:1526–1539. doi: 10.1055/s-0028-1088302.
    1. Dayalan Naidu S., Kostov R.V., Dinkova-Kostova A.T. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol. Sci. 2015;36:6–14. doi: 10.1016/j.tips.2014.10.011.
    1. Loboda A., Rojczyk-Golebiewska E., Bednarczyk-Cwynar B., Lucjusz Z., Jozkowicz A., Dulak J. Targeting Nrf2-mediated gene transcription by triterpenoids and their derivatives. Biomol. Ther. 2012;20:499–505. doi: 10.4062/biomolther.2012.20.6.499.
    1. Owusu-Ansah A., Choi S.H., Petrosiute A., Letterio J.J., Huang A.Y. Triterpenoid inducers of Nrf2 signaling as potential therapeutic agents in sickle cell disease: A review. Front. Med. 2015;9:46–56. doi: 10.1007/s11684-015-0375-1.
    1. Copple I.M., Shelton L.M., Walsh J., Kratschmar D.V., Lister A., Odermatt A., Goldring C.E., Dinkova-Kostova A.T., Honda T., Park B.K. Chemical tuning enhances both potency toward Nrf2 and in vitro therapeutic index of triterpenoids. Toxicol. Sci. 2014;140:462–469. doi: 10.1093/toxsci/kfu080.
    1. Velmurugan K., Alam J., McCord J.M., Pugazhenthi S. Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim. Free Radic. Biol. Med. 2009;46:430–440. doi: 10.1016/j.freeradbiomed.2008.10.050.
    1. Donovan E.L., McCord J.M., Reuland D.J., Miller B.F., Hamilton K.L. Phytochemical activation of Nrf2 protects human coronary artery endothelial cells against an oxidative challenge. Oxid. Med. Cell Longev. 2012;2012:132931. doi: 10.1155/2012/132931.
    1. Mehrab-Mohseni M., Sendi H., Steuerwald N., Ghosh S., Schrum L.W., Bonkovsky H.L. Legalon-SIL downregulates HCV core and NS5A in human hepatocytes expressing full-length HCV. World J. Gastroenterol. 2011;17:1694–1700. doi: 10.3748/wjg.v17.i13.1694.
    1. Podder B., Kim Y.S., Zerin T., Song H.Y. Antioxidant effect of silymarin on paraquat-induced human lung adenocarcinoma A549 cell line. Food Chem. Toxicol. 2012;50:3206–3214. doi: 10.1016/j.fct.2012.06.007.
    1. Gokila Vani M., Kumar K.J., Liao J.W., Chien S.C., Mau J.L., Chiang S.S., Lin C.C., Kuo Y.H., Wang S.Y. Antcin C from Antrodia cinnamomea Protects Liver Cells Against Free Radical-Induced Oxidative Stress and Apoptosis In Vitro and In Vivo through Nrf2-Dependent Mechanism. Evid. Based Complement. Alternat. Med. 2013;2013:296082. doi: 10.1155/2013/296082.
    1. Kim M., Yang S.G., Kim J.M., Lee J.W., Kim Y.S., Lee J.I. Silymarin suppresses hepatic stellate cell activation in a dietary rat model of non-alcoholic steatohepatitis: Analysis of isolated hepatic stellate cells. Int. J. Mol. Med. 2012;30:473–479.
    1. Wu S., Yue Y., Tian H., Li Z., Li X., He W., Ding H. Carthamus red from Carthamus tinctorius L. exerts antioxidant and hepatoprotective effect against CCl4-induced liver damage in rats via the Nrf2 pathway. J. Ethnopharmacol. 2013;148:570–578.
    1. Choi M.K., Han J.M., Kim H.G., Lee J.S., Lee J.S., Wang J.H., Son S.W., Park H.J., Son C.G. Aqueous extract of Artemisia capillaris exerts hepatoprotective action in alcohol-pyrazole-fed rat model. J. Ethnopharmacol. 2013;147:662–670. doi: 10.1016/j.jep.2013.03.065.
    1. Cao Y.W., Jiang Y., Zhang D.Y., Wang M., Chen W.S., Su H., Wang Y.T., Wan J.B. Protective effects of Penthorum chinense Pursh against chronic ethanol-induced liver injury in mice. J. Ethnopharmacol. 2015;161:92–98. doi: 10.1016/j.jep.2014.12.013.
    1. Yousefi M., Ghaffari S.H., Soltani B.M., Nafissi S., Momeny M., Zekri A., Behmanesh M., Alimoghaddam K., Ghavamzadeh A. Therapeutic efficacy of silibinin on human neuroblastoma cells: Akt and NF-κB expressions may play an important role in silibinin-induced response. Neurochem. Res. 2012;37:2053–2063. doi: 10.1007/s11064-012-0827-9.
    1. Pferschy-Wenzig E.M., Atanasov A.G., Malainer C., Noha S.M., Kunert O., Schuster D., Heiss E.H., Oberlies N.H., Wagner H., Bauer R., et al. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J. Nat. Prod. 2014;77:842–847. doi: 10.1021/np400943b.
    1. Prakash P., Singh V., Jainm M., Rana M., Khanna V., Barthwal M.K., Dikshit M. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat. Eur. J. Pharmacol. 2014;727:15–28. doi: 10.1016/j.ejphar.2014.01.038.
    1. Lin C.H., Li C.H., Liao P.L., Tse L.S., Huang W.K., Cheng H.W., Cheng Y.W. Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br. J. Pharmacol. 2013;168:920–931. doi: 10.1111/j.1476-5381.2012.02227.x.
    1. Wang C., Wang Z., Zhang X., Zhang X., Dong L., Xing Y., Lim Y., Liu Z., Chen L., Qiao H., et al. Protection by silibinin against experimental ischemic stroke: Up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression. Neurosci. Lett. 2012;529:45–50. doi: 10.1016/j.neulet.2012.08.078.
    1. Jung H.J., Park J.W., Lee J.S., Lee S.R., Jang B.C., Suh S.I., Suh M.H., Baek W.K. Silibinin inhibits expression of HIF-1alpha through suppression of protein translation in prostate cancer cells. Biochem. Biophys. Res. Commun. 2009;390:71–76. doi: 10.1016/j.bbrc.2009.09.068.
    1. Tyagi A., Agarwal C., Dwyer-Nield L.D., Singh R.P., Malkinson A.M., Agarwal R. Silibinin modulates TNF-α and IFN-γ mediated signaling to regulate COX2 and iNOS expression in tumorigenic mouse lung epithelial LM2 cells. Mol. Carcinog. 2012;51:832–842. doi: 10.1002/mc.20851.
    1. Hou Y.C., Liou K.T., Chern C.M., Wang Y.H., Liao J.F., Chang S., Chou Y.H., Shen Y.C. Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-κB and STAT-1 activation. Phytomedicine. 2010;17:963–973. doi: 10.1016/j.phymed.2010.03.012.
    1. Agarwal C., Tyagi A., Kaur M., Agarwal R. Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis. 2007;28:1463–1470. doi: 10.1093/carcin/bgm042.
    1. Lee-Hilz Y.Y., Boerboom A.M., Westphal A.H., Berkel W.J., Aarts J.M., Rietjens I.M. Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem. Res. Toxicol. 2006;19:1499–1505. doi: 10.1021/tx060157q.
    1. Erlank H., Elmann A., Kohen R., Kanner J. Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic. Biol. Med. 2011;51:2319–2327. doi: 10.1016/j.freeradbiomed.2011.09.033.
    1. Tang N., Wu D., Lu Y., Chen J., Zhang B., Wu W. A comparative study on the stability of silybin and that in silymarin in buffers and biological fluids. Drug Metab. Lett. 2009;3:115–119. doi: 10.2174/187231209788654072.
    1. Zatloukalová M., Křen V., Gažák R., Kubala M., Trouillas P., Ulrichová J., Vacek J. Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II) Bioelectrochemistry. 2011;82:117–124. doi: 10.1016/j.bioelechem.2011.06.005.
    1. Gharagozloo M., Khoshdel Z., Amirghofran Z. The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: A comparison with desferrioxamine. Eur. J. Pharmacol. 2008;589:1–7. doi: 10.1016/j.ejphar.2008.03.059.
    1. Fan S., Qi M., Yu Y., Li L., Yao G., Tashiro S., Onodera S., Ikejima T. P53 activation plays a crucial role in silibinin induced ROS generation via PUMA and JNK. Free Radic. Res. 2012;46:310–319. doi: 10.3109/10715762.2012.655244.
    1. Awad H.M., Boersma M.G., Boeren S., van Bladeren P.J., Vervoort J., Rietjens I.M. Structure-activity study on the quinone/quinone methide chemistry of flavonoids. Chem. Res. Toxicol. 2001;14:398–408. doi: 10.1021/tx000216e.
    1. Awad H.M., Boersma M.G., Boeren S., van Bladeren P.J., Vervoort J., Rietjens I.M. The regioselectivity of glutathione adduct formation with flavonoid quinone/quinone methides is pH-dependent. Chem. Res. Toxicol. 2002;15:343–351. doi: 10.1021/tx010132l.
    1. Zhang S., Yang Y., Liang Z., Duan W., Yang J., Yan J., Wang N., Feng W., Ding M., Nie Y., et al. Silybin-mediated inhibition of notch signaling exerts antitumor activity in human hepatocellular carcinoma cells. PLoS One. 2013;8:e83699. doi: 10.1371/journal.pone.0083699.
    1. Kim T.H., Woo J.S., Kim Y.K., Kim K.H. Silibinin induces cell death through reactive oxygen species-dependent downregulation of notch-1/ERK/Akt signaling in human breast cancer cells. J. Pharmacol. Exp. Ther. 2014;349:268–278. doi: 10.1124/jpet.113.207563.
    1. Woo S.M., Min K.J., Kim S., Park J.W., Kim D.E., Chun K.S., Kim Y.H., Lee T.J., Kim S.H., Choi Y.H., et al. Silibinin induces apoptosis of HT29 colon carcinoma cells through early growth response-1 (EGR-1)-mediated non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) up-regulation. Chem. Biol. Interact. 2014;211:36–43. doi: 10.1016/j.cbi.2014.01.004.
    1. Tkach K.E., Oyler J.E., Altan-Bonnet G. Cracking the NF-κB code. Sci Signal. 2014;7:pe5. doi: 10.1126/scisignal.2005108.
    1. Buelna-Chontal M., Zazueta C. Redox activation of Nrf2 & NF-κB: A double end sword? Cell Signal. 2013;25:2548–2557. doi: 10.1016/j.cellsig.2013.08.007.
    1. Pedruzzi L.M., Stockler-Pinto M.B., Leite M., Jr., Mafra D. Nrf2-keap1 system versus NF-κB: The good and the evil in chronic kidney disease? Biochimie. 2012;94:2461–2466. doi: 10.1016/j.biochi.2012.07.015.
    1. Pal S., Bhattacharjee A., Ali A., Mandal N.C., Mandal S.C., Pal M. Chronic inflammation and cancer: Potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J. Inflamm. (Lond.). 2014;11:23. doi: 10.1186/1476-9255-11-23.
    1. Hayden M.S., Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 2014;26:253–266. doi: 10.1016/j.smim.2014.05.004.
    1. Gupta S.C., Tyagi A.K., Deshmukh-Taskar P., Hinojosa M., Prasad S., Aggarwal B.B. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch. Biochem. Biophys. 2014;559:91–99. doi: 10.1016/j.abb.2014.06.006.
    1. Stevenson D.E., Hurst R.D. Polyphenolic phytochemicals—Just antioxidants or much more? Cell Mol. Life. Sci. 2007;64:2900–2916. doi: 10.1007/s00018-007-7237-1.
    1. Ramasamy K., Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008;269:352–362. doi: 10.1016/j.canlet.2008.03.053.
    1. Manna S.K., Mukhopadhyay A., Van N.T., Aggarwal B.B. Silymarin suppresses TNF-induced activation of NF-κB, c-Jun N-terminal kinase, and apoptosis. J. Immunol. 1999;163:6800–6809.
    1. Tsai M.J., Liao J.F., Lin D.Y., Huang M.C., Liou D.Y., Yang H.C., Lee H.J., Chen Y.T., Chi C.W., Huang W.C., et al. Silymarin protects spinal cord and cortical cells against oxidative stress and lipopolysaccharide stimulation. Neurochem. Int. 2010;57:867–875. doi: 10.1016/j.neuint.2010.09.005.
    1. Giorgi V.S., Peracoli M.T., Peracoli J.C., Witkin S.S., Bannwart-Castro C.F. Silibinin modulates the NF-κB pathway and pro-inflammatory cytokine production by mononuclear cells from preeclamptic women. J. Reprod. Immunol. 2012;95:67–72. doi: 10.1016/j.jri.2012.06.004.
    1. Kim B.R., Seo H.S., Ku J.M., Kim G.J., Jeon C.Y., Park J.H., Jang B.H., Park S.J., Shin Y.C., Ko S.G. Silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-κB signaling pathway in HMC-1 human mast cells. Inflamm. Res. 2013;62:941–950. doi: 10.1007/s00011-013-0640-1.
    1. Gharagozloo M., Velardi E., Bruscoli S., Agostini M., di Sante M., Donato V., Amirghofran Z., Riccardi C. Silymarin suppress CD4+ T cell activation and proliferation: Effects on NF-κB activity and IL-2 production. Pharmacol. Res. 2010;61:405–409. doi: 10.1016/j.phrs.2009.12.017.
    1. Oskoueian E., Abdullah N., Idrus Z., Ebrahimi M., Goh Y.M., Shakeri M., Oskoueian A. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes. BMC Complement Altern. Med. 2014;14:368. doi: 10.1186/1472-6882-14-368.
    1. Wang Q., Zou L., Liu W., Hao W., Tashiro S., Onodera S., Ikejima T. Inhibiting NF-κB activation and ROS production are involved in the mechanism of silibinin’s protection against d-galactose-induced senescence. Pharmacol. Biochem. Behav. 2011;98:140–149. doi: 10.1016/j.pbb.2010.12.006.
    1. Salamone F., Galvano F., Marino Gammazza A., Paternostro C., Tibullo D., Bucchieri F., Mangiameli A., Parola M., Bugianesi E., Li Volti G. Silibinin improves hepatic and myocardial injury in mice with nonalcoholic steatohepatitis. Dig. Liver Dis. 2012;44:334–342. doi: 10.1016/j.dld.2011.11.010.
    1. Liu B.N., Hanm B.X., Liu F. Neuroprotective effect of pAkt and HIF-1 α on ischemia rats. Asian Pac. J. Trop. Med. 2014;7:221–225. doi: 10.1016/S1995-7645(14)60025-0.
    1. Aristatile B., Al-Assaf A.H., Pugalendi K.V. Carvacrol suppresses the expression of inflammatory marker genes in d-galactosamine-hepatotoxic rats. Asian Pac. J. Trop. Med. 2013;6:205–211. doi: 10.1016/S1995-7645(13)60024-3.
    1. Salama S.M., Abdulla M.A., Alrashdi A.S., Hadi A.H. Mechanism of Hepatoprotective Effect of Boesenbergia rotunda in Thioacetamide-Induced Liver Damage in Rats. Evid. Based Complement. Alternat. Med. 2013;2013:157456. doi: 10.1155/2013/157456.
    1. Abhilash P.A., Harikrishnan R., Indira M. Ascorbic acid is superior to silymarin in the recovery of ethanol-induced inflammatory reactions in hepatocytes of guinea pigs. J. Physiol. Biochem. 2013;69:785–798. doi: 10.1007/s13105-013-0255-6.
    1. Abhilash P.A., Harikrishnan R., Indira M. Ascorbic acid suppresses endotoxemia and NF-κB signaling cascade in alcoholic liver fibrosis in guinea pigs: A mechanistic approach. Toxicol. Appl. Pharmacol. 2014;274:215–224. doi: 10.1016/j.taap.2013.11.005.
    1. Rattan S.I. The nature of gerontogenes and vitagenes. Antiaging effects of repeated heat shock on human fibroblasts. Ann. N. Y. Acad. Sci. 1998;854:54–60. doi: 10.1111/j.1749-6632.1998.tb09891.x.
    1. Calabrese V., Boyd-Kimball D., Scapagnini G., Butterfield D.A. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenes. Vivo. 2004;18:245–267.
    1. Calabrese V., Guagliano E., Sapienza M., Panebianco M., Calafato S., Puleo E., Pennisi G., Mancuso C., Butterfield D.A., Stella A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: Role of vitagenes. Neurochem. Res. 2007;32:757–773. doi: 10.1007/s11064-006-9203-y.
    1. Calabrese V., Calafato S., Puleo E., Cornelius C., Sapienza M., Morganti P., Mancuso C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: Role of vitagenes. Clin. Dermatol. 2008;26:358–363. doi: 10.1016/j.clindermatol.2008.01.005.
    1. Calabrese V., Cornelius C., Mancuso C., Barone E., Calafato S., Bates T., Rizzarelli E., Kostova A.T. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front. Biosci. 2009;14:376–397. doi: 10.2741/3250.
    1. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors. 2009;35:146–160. doi: 10.1002/biof.22.
    1. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 2010;13:1763–1811. doi: 10.1089/ars.2009.3074.
    1. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Iavicoli I., di Paola R., Koverech A., Cuzzocrea S., Rizzarelli E., Calabrese E.J. Cellular stress responses, hermetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta. 2012;1822:753–783.
    1. Calabrese V., Scapagnini G., Davinelli S., Koverech G., Koverech A., de Pasquale C., Salinaro A.T., Scuto M., Calabrese E.J., Genazzani A.R. Sex hormonal regulation and hormesis in aging and longevity: Role of vitagenes. J. Cell Commun. Signal. 2014;8:369–384. doi: 10.1007/s12079-014-0253-7.
    1. Cornelius C., Perrotta R., Graziano A., Calabrese E.J., Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi”. Immun. Ageing. 2013;10:15. doi: 10.1186/1742-4933-10-15.
    1. Cornelius C., Graziano A., Calabrese E.J., Calabrese V. Hormesis and vitagenes in aging and longevity: Mitochondrial control and hormonal regulation. Horm. Mol. Biol. Clin. Investig. 2013;16:73–89.
    1. Cornelius C., Koverech G., Crupi R., di Paola R., Koverech A., Lodato F., Scuto M., Salinaro A.T., Cuzzocrea S., Calabrese E.J., et al. Osteoporosis and Alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front. Pharmacol. 2014;5:120. doi: 10.3389/fphar.2014.00120.
    1. Trovato Salinaro A., Cornelius C., Koverech G., Koverech A., Scuto M., Lodato F., Fronte V., Muccilli V., Reibaldi M., Longo A., et al. Cellular stress response, redox status, and vitagenes in glaucoma: A systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol. 2014;5:129. doi: 10.3389/fphar.2014.00129.
    1. Cerný D., Canová N.K., Martínek J., Horínek A., Kmonícková E., Zídek Z., Farghali H. Effects of resveratrol pretreatment on tert-butylhydroperoxide induced hepatocyte toxicity in immobilized perifused hepatocytes: Involvement of inducible nitric oxide synthase and hemoxygenase-1. Nitric Oxide. 2009;20:1–8. doi: 10.1016/j.niox.2008.08.006.
    1. Venditti C.C., Smith G.N. Involvement of the heme oxygenase system in the development of preeclampsia and as a possible therapeutic target. Womens. Health (Lond. Engl.) 2014;10:623–643. doi: 10.2217/whe.14.54.
    1. Naito Y., Takagi T., Higashimura Y. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 2014;564:83–88. doi: 10.1016/j.abb.2014.09.005.
    1. Ambegaokar S.S., Kolson D.L. Heme oxygenase-1 dysregulation in the brain: Implications for HIV-associated neurocognitive disorders. Curr. HIV Res. 2014;12:174–188. doi: 10.2174/1570162X12666140526122709.
    1. Bongiovanni G.A., Soria E.A., Eynard A.R. Effects of the plant flavonoids silymarin and quercetin on arsenite-induced oxidative stress in CHO-K1 cells. Food Chem. Toxicol. 2007;45:971–976. doi: 10.1016/j.fct.2006.12.002.
    1. Demir M., Amanvermez R., Kamalı Polat A., Karabıçak I., Cınar H., Kesicioğlu T., Polat C. The effect of silymarin on mesenteric ischemia-reperfusion injury. Med. Princ. Pract. 2014;23:140–144.
    1. Zhao H., Brandt G.E., Galam L., Matts R.L., Blagg B.S. Identification and initial SAR of silybin: An Hsp90 inhibitor. Bioorg. Med. Chem. Lett. 2011;21:2659–2664. doi: 10.1016/j.bmcl.2010.12.088.
    1. Jiang Y.Y., Wang H.J., Wang J., Tashiro S., Onodera S., Ikejima T. The protective effect of silibinin against mitomycin C-induced intrinsic apoptosis in human melanoma A375-S2 cells. J. Pharmacol. Sci. 2009;111:137–146. doi: 10.1254/jphs.09171FP.
    1. Zhou B., Wu L.J., Li L.H., Tashiro S., Onodera S., Uchiumi F., Ikejima T. Silibinin protects against isoproterenol-induced rat cardiac myocyte injury through mitochondrial pathway after up-regulation of SIRT1. J. Pharmacol.Sci. 2006;102:387–395. doi: 10.1254/jphs.FPJ06005X.
    1. Wang Q., Liu M., Liu W.W., Hao W.B., Tashiro S., Onodera S., Ikejima T. In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of Sirt-1 expression and autophagy in pancreatic β-cell. J. Asian Nat. Prod. Res. 2012;14:413–423.
    1. Li L.H., Wu L.J., Tashiro S.I., Onodera S., Uchiumi F., Ikejima T. Activation of the SIRT1 pathway and modulation of the cell cycle were involved in silymarin’s protection against UV-induced A375-S2 cell apoptosis. J. Asian Nat. Prod. Res. 2007;9:245–252. doi: 10.1080/10286020600604260.
    1. Wang H.J., Tashiro S., Onodera S., Ikejima T. Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. J. Pharmacol. Sci. 2008;107:260–269. doi: 10.1254/jphs.08054FP.
    1. Wu Y.T., Wu S.B., Wei Y.H. Roles of sirtuins in the regulation of antioxidant defense and bioenergetic function of mitochondria under oxidative stress. Free Radic. Res. 2014;48:1070–1084. doi: 10.3109/10715762.2014.920956.
    1. Wu Y.T., Wu S.B., Wei Y.H. Metabolic reprogramming of human cells in response to oxidative stress: Implications in the pathophysiology and therapy of mitochondrial diseases. Curr. Pharm. Des. 2014;20:5510–5526. doi: 10.2174/1381612820666140306103401.
    1. Horio Y., Hayashi T., Kuno A., Kunimoto R. Cellular and molecular effects of sirtuins in health and disease. Clin. Sci. (Lond.) 2011;121:191–203. doi: 10.1042/CS20100587.
    1. Jayasena T., Poljak A., Smythe G., Braidy N., Münch G., Sachdev P. The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer’s disease. Ageing Res. Rev. 2013;12:867–883. doi: 10.1016/j.arr.2013.06.003.
    1. Radak Z., Koltai E., Taylor A.W., Higuchi M., Kumagai S., Ohno H., Goto S., Boldogh I. Redox-regulating sirtuins in aging, caloric restriction, and exercise. Free Radic. Biol. Med. 2013;58:87–97. doi: 10.1016/j.freeradbiomed.2013.01.004.
    1. Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036.
    1. Penney R.B., Roy D. Thioredoxin-mediated redox regulation of resistance to endocrine therapy in breast cancer. Biochim. Biophys. Acta. 2013;1836:60–79.
    1. Surai K.P., Surai P.F., Speake B.K., Sparks N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought. 2. Antioxidants. Curr. Top. Nutraceutical. Res. 2004;2:27–46.
    1. Surai K.P., Surai P.F., Speake B.K., Sparks N.H.C. Antioxidant-prooxidant balance in the intestine: Food for thought. 1. Prooxidants. Nutr. Genomics Funct. Foods. 2003;1:51–70.
    1. Dolara P., Luceri C., de Filippo C., Femia A.P., Giovannelli L., Caderni G., Cecchini C., Silvi S., Orpianesi C., Cresci A. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat. Res. 2005;591:237–246. doi: 10.1016/j.mrfmmm.2005.04.022.
    1. Kanner J., Lapidot T. The stomach as a bioreactor: Dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic. Biol. Med. 2001;31:1388–1395. doi: 10.1016/S0891-5849(01)00718-3.
    1. Giovannelli L., Testa G., de Filippo C., Cheynier V., Clifford M.N., Dolara P. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo. Eur. J. Nutr. 2000;39:207–212. doi: 10.1007/s003940070013.
    1. Gorelik S., Lapidot T., Shaham I., Granit R., Ligumsky M., Kohen R., Kanner J. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: Health implications. J. Agric. Food Chem. 2005;53:3397–3402. doi: 10.1021/jf040401o.
    1. Dai F., Chen W.F., Zhou B. Antioxidant synergism of green tea polyphenols with alpha-tocopherol and l-ascorbic acid in SDS micelles. Biochimie. 2008;90:1499–1505. doi: 10.1016/j.biochi.2008.05.007.
    1. Gorelik S., Ligumsky M., Kohen R., Kanner J. The stomach as a “bioreactor”: When red meat meets red wine. J. Agric. Food Chem. 2008;56:5002–5007. doi: 10.1021/jf703700d.
    1. Gorelik S., Ligumsky M., Kohen R., Kanner J. A novel function of red wine polyphenols in humans: Prevention of absorption of cytotoxic lipid peroxidation products. FASEB J. 2008;22:41–46. doi: 10.1096/fj.07-9041com.
    1. Kanner J., Gorelik S., Roman S., Kohen R. Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: The stomach as a bioreactor. J. Agric. Food Chem. 2012;60:8790–8796. doi: 10.1021/jf300193g.
    1. Circu M.L., Aw T.Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol. 2012;23:729–737. doi: 10.1016/j.semcdb.2012.03.014.
    1. Martínez J.A., Etxeberría U., Galar A., Milagro F.I. Role of dietary polyphenols and inflammatory processes on disease progression mediated by the gut microbiota. Rejuvenation Res. 2013;16:435–437. doi: 10.1089/rej.2013.1481.
    1. Biasi F., Deiana M., Guina T., Gamba P., Leonarduzzi G., Poli G. Wine consumption and intestinal redox homeostasis. Redox Biol. 2014;2:795–802. doi: 10.1016/j.redox.2014.06.008.
    1. Biasi F., Astegiano M., Maina M., Leonarduzzi G., Poli G. Polyphenol supplementation as a complementary medicinal approach to treating inflammatory bowel disease. Curr. Med. Chem. 2011;18:4851–4865. doi: 10.2174/092986711797535263.
    1. Gessner D.K., Fiesel A., Most E., Dinges J., Wen G., Ringseis R., Eder K. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet. Scand. 2013;55:18. doi: 10.1186/1751-0147-55-18.
    1. Yang G., Wangm H., Kang Y., Zhu M.J. Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice. Food Funct. 2014;5:2558–2563. doi: 10.1039/C4FO00451E.
    1. Goodrich K.M., Fundaro G., Griffin L.E., Grant A., Hulver M.W., Ponder M.A., Neilson A.P. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: A secondary analysis of healthy Wistar Furth rats. Nutr. Res. 2012;32:787–794. doi: 10.1016/j.nutres.2012.09.004.
    1. Rodríguez-Ramiro I., Ramos S., Bravo L., Goya L., Martín M.Á. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J. Nutr. Biochem. 2011;22:1186–1194.
    1. Rodríguez-Ramiro I., Martín M.A., Ramos S., Bravo L., Goya L. Comparative effects of dietary flavanols on antioxidant defences and their response to oxidant-induced stress on Caco2 cells. Eur. J. Nutr. 2011;50:313–322. doi: 10.1007/s00394-010-0139-2.
    1. Köck K., Xie Y., Hawke R.L., Oberlies N.H., Brouwer K.L. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug Metab. Dispos. 2013;41:958–965. doi: 10.1124/dmd.112.048272.
    1. Shin J.H., Lee C.W., Oh S.J., Yun J., Lee K., Park S.K., Kim H.M., Han S.B., Kim Y., Kim H.C., et al. Protective effect of silymarin against ethanol-induced gastritis in rats: Role of sulfhydryls, nitric oxide and gastric sensory afferents. Food Chem. Toxicol. 2013;55:353–357. doi: 10.1016/j.fct.2013.01.019.
    1. Esmaily H., Hosseini-Tabatabaei A., Rahimian R., Khorasani R., Baeeri M., Barazesh-Morgani A., Yasa N., Khademi Y., Abdollahi M. On the benefits of silymarin in murine colitis by improving balance of destructive cytokines and reduction of toxic stress in the bowel cells. Central Eur. Kournal. Biol. 2009;4:204–213. doi: 10.2478/s11535-008-0053-2.
    1. Esmaily H., Vaziri-Bami A., Miroliaee A.E., Baeeri M., Abdollahi M. The correlation between NF-κB inhibition and disease activity by coadministration of silibinin and ursodeoxycholic acid in experimental colitis. Fundam. Clin. Pharmacol. 2011;25:723–733. doi: 10.1111/j.1472-8206.2010.00893.x.
    1. Moco S., Martin F.P., Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J. Proteome. Res. 2012;11:4781–4790. doi: 10.1021/pr300581s.
    1. Pozuelo M.J., Agis-Torres A., Hervert-Hernández D., Elvira López-Oliva M., Muñoz-Martínez E., Rotger R., Goñi I. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. J. Food Sci. 2012;77:H59–H62. doi: 10.1111/j.1750-3841.2011.02520.x.
    1. Parkar S.G., Trower T.M., Stevenson D.E. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe. 2013;23:12–19. doi: 10.1016/j.anaerobe.2013.07.009.
    1. Bolca S., van de Wiele T., Possemiers S. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 2013;24:220–225. doi: 10.1016/j.copbio.2012.09.009.

Source: PubMed

3
구독하다