Reliability of a novel serious game using dual-task gait profiles to early characterize aMCI

Ioannis Tarnanas, Sotirios Papagiannopoulos, Dimitris Kazis, Mark Wiederhold, Brenda Widerhold, Magda Tsolaki, Ioannis Tarnanas, Sotirios Papagiannopoulos, Dimitris Kazis, Mark Wiederhold, Brenda Widerhold, Magda Tsolaki

Abstract

Background: As the population of older adults is growing, the interest in a simple way to detect characterize amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer's disease (AD), is becoming increasingly important. Serious game (SG) -based cognitive and motor performance profiles while performing everyday activities and dual-task walking (DTW) "motor signatures" are two very promising markers that can be detected in predementia states. We aim to compare the consistency, or conformity, of measurements made by a custom SG with DTW (NAV), a SG without DTW (DOT), neuropsychological measures and genotyping as markers for early detection of aMCI.

Methods: The study population included three groups: early AD (n = 86), aMCI (n = 65), and healthy control subjects (n = 76), who completed the custom SG tasks in three separate sessions over a 3-month period. Outcome measures were neuropsychological data across-domain and within-domain intra-individual variability (IIV) and DOT and NAV latency-based and accuracy-based IIV. IIV reflects a transient, within-person change in behavioral performance, either during different cognitive domains (across-domain) or within the same domain (within-domain). Test-retest reliability of the DOT and NAV markers were assessed using an intraclass correlation (ICC) analysis.

Results: RESULTS indicated that performance data, such as the NAV latency-based and accuracy-based IIV, during the task displayed greater reliability across sessions compared to DOT. During the NAV task-engagement, the executive function, planning, and motor performance profiles exhibited moderate to good reliability (ICC = 0.6-0.8), while during DOT, executive function and spatial memory accuracy profiles exhibited fair to moderate reliability (ICC = 0.3-0.6). Additionally, reliability across tasks was more stable when three sessions were used in the ICC calculation relative to two sessions.

Discussion: Our findings suggest that "motor signature" data during the NAV tasks were a more reliable marker for early diagnosis of aMCI than DOT. This result accentuates the importance of utilizing motor performance data as a metric for aMCI populations where memory decline is often the behavioral outcome of interest. In conclusion, custom SG with DTW performance data provide an ecological and reliable approach for cognitive assessment across multiple sessions and thus can be used as a useful tool for tracking longitudinal change in observational and interventional studies on aMCI.

Keywords: Alzheimer’s disease; early diagnosis; mild cognitive impairment; motor performance; test–retest reliability; virtual reality.

Figures

FIGURE 1
FIGURE 1
The custom SG with DTW setup.
FIGURE 2
FIGURE 2
Comparison of accuracy-based intra-individual variability (IIV) scores between diagnostic groups: intra-individual standard deviation (ISD) representing mean across-domain IIV for DOT and NAV as well as mean within-domain IIV for DOT and NAV per diagnostic group (HCS, healthy control subjects; MCI, mild cognitive impairment; AD, Alzheimer’s disease). Error bars display 95% confidence interval for the mean with p values based on Sidak post hoc tests following analyses of covariance for the comparison of means adjusted for age, years of education and gender as well as mean across-domain performance (A) and mean within-domain performance (B), respectively.
FIGURE 3
FIGURE 3
Comparison of latency-based IIV scores between diagnostic groups.
FIGURE 4
FIGURE 4
Behavioral results for the DOT task. ICC values from (A) accuracy-based and (B) latency-based IIV times with 3 and 2 experimental sessions. Error bars represent 95% confidence interval.
FIGURE 5
FIGURE 5
Behavioral results for the NAV task. ICC values from (A) accuracy-based and (B) latency-based IIV times with 3 and 2 experimental sessions. Error bars represent 95% confidence interval.

References

    1. Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 7 270–279 10.1016/j.jalz.2011.03.008
    1. Al-Yahya E., Dawes H., Smith L., Dennis A., Howells K., Cockburn J. (2011). Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 35 715–728 10.1016/j.neubiorev.2010.08.008
    1. Anstey K. J., Mack H. A., Christensen H., Li S.-C., Reglade-Meslin C., Maller J., et al. (2007). Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia 45 1911–1920 10.1016/j.neuropsychologia.2006.11.020
    1. Bielak A. A., Hultsch D. F., Strauss E., MacDonald S. W. S., Hunter M. A. (2010). Intraindividual variability is related to cognitive change in older adults: evidence for within-person coupling. Psychol. Aging 25 575–586 10.1037/a0019503
    1. Brewster P., Tuokko H., MacDonald S. (2012). Inter-test variability contributes independently to the five-year prediction of Alzheimer’s disease in nondemented older adults. Alzheimers Dement. 8 369 10.1016/j.jalz.2012.05.1010
    1. Burger C. (2010). Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front. Aging Neurosci. 2:140 10.3389/fnagi.2010.00140
    1. Carlesimo G. A., Perri R., Caltagirone C. (2011). Category cued recall following controlled encoding as a neuropsychological tool in the diagnosis of Alzheimer’s disease: a review of the evidence. Neuropsychol. Rev. 21 54–65 10.1007/s11065-010-9153-7
    1. Chapman G. J., Hollands M. A. (2006). Evidence for a link between changes to gaze behaviour and risk of falling in older adults during adaptive locomotion. Gait Posture 24 288–294 10.1016/j.gaitpost.2005.10.002x
    1. Chapman G. J., Hollands M. A. (2007). Evidence that older adult fallers prioritise the planning of future stepping actions over the accurate execution of ongoing steps during complex locomotor tasks. Gait Posture 26 59–67 10.1016/j.gaitpost.2006.07.010
    1. Chechko N., Drexler E. I., Voss B., Kellermann T., Finkelmeyer A., Schneider F., et al. (2014). Neural correlates of unsuccessful memory performance in MCI. Front. Aging Neurosci. 6:201 10.3389/fnagi.2014.00201
    1. Cushman L. A., Stein K., Duffy C. J. (2008). Detecting navigational deficits in cognitive aging and alzheimer disease using virtual reality. Neurology 71 888–895 10.1212/01.wnl.0000326262.67613.fe
    1. De Jager C. A., Honey T. E., Birks J., Wilcock G. K. (2010). Retrospective evaluation of revised criteria for the diagnosis of alzheimer’s disease using a cohort with post-mortem diagnosis. Int. J. Geriatr. Psychiatry 25 988–997 10.1002/gps.2448
    1. De Lillo C., James F. C. (2012). Spatial working memory for clustered and linear configurations of sites in a virtual reality foraging task. Cogn. Process. 13(Suppl. 1), S243–S246 10.1007/s10339-012-0448-x
    1. Dickerson B. C., Wolk D. and Alzheimer’s Disease Neuroimaging Initiative. (2013). Biomarker-based prediction of progression in MCI: comparison of AD-signature and hippocampal volume with spinal fluid amyloid-B and tau. Front. Aging Neurosci. 5:55 10.3389/fnagi.2013.00055
    1. Di Fabio R. P., Zampieri C., Henke J., Olson K., Rickheim D., Russell M. (2005). Influence of elderly executive cognitive function on attention in the lower visual field during step initiation. Gerontology 51 94–107 10.1159/000082194
    1. Dixon R. A., Garrett D., Lentz T. L., MacDonald S. W. S., Strauss E., Hultsch D. F. (2007). Neurocognitive markers of cognitive impairment: exploring the roles of speed and inconsistency. Neuropsychology 21 381–399 10.1037/0894-4105.21.3.381
    1. Duara R., Loewenstein D. A., Shen Q., Barker W., Varon D., Greig M. T., et al. (2013). The utility of age-specific cut-offs for visual rating of medial temporal atrophy in classifying Alzheimer’s Disease, MCI and cognitively normal elderly subjects. Front. Aging Neurosci. 5:47 10.3389/fnagi.2013.00047
    1. Dubois B. and Albert M. L. (2004). Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 3 246–248 10.1016/S1474-4422(04)00710-0
    1. Dubois B., Feldman H. H., Jacova C., Hampel H., Molinuevo J. L., Blennow K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s Disease: the IWG-2 criteria. Lancet Neurol. 13 614–629 10.1016/S1474-4422(14)70090-0
    1. Duchek J. M., Balota D. A., Tse C.-S., Holtzman D. M., Fagan A. M., Goate A. M. (2009). The utility of intraindividual variability in selective attention tasks as an early marker for Alzheimer’s disease. Neuropsychology 23 746–758 10.1037/a0016583
    1. Duron E., Vidal J. S., Bounatiro S., Ben Ahmed S., Seux M. L., Rigaud A. S., et al. (2014). Relationships between personality traits, medial temporal lobe atrophy, and white matter lesion in subjects suffering from mild cognitive impairment. Front. Aging Neurosci. 6:195 10.3389/fnagi.2014.00195
    1. Ferreira D., Perestelo-Pérez L., Westman E., Wahlund L. O., Sarría A., Serrano-Aguilar P., et al. (2014). Meta-review of CSF core biomarkers in Alzheimer’s disease: the state-of-the-art after the new revised diagnostic criteria. Front. Aging Neurosci. 6:47 10.3389/fnagi.2014.00047
    1. Filbey F. M., Chen G., Sunderland T., Cohen R. M. (2010). Failing compensatory mechanisms during working memory in older apolipoprotein e-epsilon4 healthy adults. Brain Imaging Behav. 4 177–188 10.1007/s11682-010-9097-9
    1. Fletcher E., Carmichael O., Pasternak O., Maier-Hein K. H., DeCarli C. (2014). Early brain loss in circuits affected by alzheimer’s disease is predicted by fornix microstructure but may be independent of gray matter. Front. Aging Neurosci. 6:106 10.3389/fnagi.2014.00106
    1. Folstein M. F., Folstein S. E. and McHugh. P. R. (1975). Mini-mental state. a practical method for grading the cognitive state of patients for the clinician. J. Psychiatric Res. 12 189–198 10.1016/0022-3956(75)90026-6
    1. Gillain S., Warzee E., Lekeu F., Wojtasik V., Maquet D., Croisier J.-L., et al. (2009). The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions. Ann. Phys. Rehabil. Med. 52 453–474 10.1016/j.rehab.2008.10.004
    1. Grober E., Buschke H., Crystal H., Bang S., Dresner R. (1988). Screening for dementia by memory testing. Neurology 38 900–903 10.1212/WNL.38.6.900
    1. Gwin J. T., Gramann K., Makeig S., Ferris D. P. (2011). Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage 54 1289–1296 10.1016/j.neuroimage.2010.08.066
    1. Holden H. M., Gilbert P. E. (2012). Less efficient pattern separation may contribute to age-related spatial memory deficits. Front. Aging Neurosci. 4:9 10.3389/fnagi.2012.00009
    1. Holtzer R., Verghese J., Wang C., Hall C. B. and Lipton. R. B. (2008). Within-person across-neuropsychological test variability and incident dementia. JAMA 300 823–830 10.1001/jama.300.7.823
    1. Isaacs B., Akhtar A. J. (1972). The set test: a rapid test of mental function in old people. Age Ageing 1 222–226 10.1093/ageing/1.4.222
    1. Jackson J. D., Balota D. A., Duchek J. M., Head D. (2012). White matter integrity and reaction time intraindividual variability in healthy aging and early-stage Alzheimer disease. Neuropsychologia 50 357–366 10.1016/j.neuropsychologia.2011.11.024
    1. Kälin A. M., Pflüger M., Gietl A. F., Riese F., Jäncke L., Nitsch R. M., et al. (2014). Intraindividual variability across cognitive tasks as a potential marker for prodromal Alzheimer’s disease. Front. Aging Neurosci. 6:147 10.3389/fnagi.2014.00147
    1. Kam A. C., Sung J. K., Lee T., Wong T. K. and van Hasselt. A. (2012). Clinical evaluation of a computerized self-administered hearing test. Int. J. Audiol. 51 606–610 10.3109/14992027.2012.688144
    1. Kelaiditi E., Cesari M., Canevelli M., van Kan G. A., Ousset P. J., Gillette-Guyonnet S., et al. (2013). Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J. Nutr. Health Aging 17 726–734 10.1007/s12603-013-0367-2
    1. Kelemen E., Fenton A. A. (2010). Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol. 8:e1000403 10.1371/journal.pbio.1000403
    1. Kofler M. J., Matt Alderson R., Raiker J. S., Bolden J., Sarver D. E., Rapport M. D. (2014). Working memory and intraindividual variability as neurocognitive indicators in ADHD: examining competing model predictions. Neuropsychology 28 459–471 10.1037/neu0000050
    1. Korsch M., Frühholz S., Herrmann M. (2014). Ageing differentially affects neural processing of different conflict types-an fMRI Study. Front. Aging Neurosci. 6:57 10.3389/fnagi.2014.00057
    1. Lindberg O., Walterfang M., Looi J. C., Malykhin N., Ostberg P., Zandbelt B., et al. (2012a). Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. J. Alzheimers Dis. 30 355–365 10.3233/JAD-2012-112210
    1. Lindberg O., Westman E., Karlsson S., Ostberg P., Svensson L. A., Simmons A., et al. (2012b). Is the subcallosal medial prefrontal cortex a common site of atrophy in Alzheimer’s disease and frontotemporal lobar degeneration? Front. Aging Neurosci. 4:32 10.3389/fnagi.2012.00032
    1. Lockhart S. N., Mayda A. B., Roach A. E., Fletcher E., Carmichael O., Maillard P., et al. (2012). Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. Front. Hum. Neurosci. 6:56 10.3389/fnhum.2012.00056
    1. Lövdén M., Schmiedek F., Kennedy K. M., Rodrigue K. M., Lindenberger U., Raz N. (2013). Does variability in cognitive performance correlate with frontal brain volume? Neuroimage 64 209–215 10.1016/j.neuroimage.2012.09.039
    1. MacDonald S., Brewster P., Laukka E., Fratiglioni L., Bäckman L. (2012). Intraindividual variability across neuropsychological tasks is associated with risk of Alzheimer’s disease. Alzheimers Dement. 8 P370. 10.1016/j.jalz.2012.05.1016
    1. MacDonald S. W., Li S. C., Bäckman L. (2009). Neural Underpinnings of within-person variability in cognitive functioning. Psychol. Aging 24 792–808 10.1037/a0017798
    1. McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 263–269 10.1016/j.jalz.2011.03.005
    1. Michon A. (2009). The Concept of mild cognitive impairment: relevance and limits in clinical practice. Front. Neurol. Neurosci. 24:12 10.1159/000197880
    1. Montero-Odasso M., Casas A., Hansen K. T., Bilski P., Gutmanis I., Wells J. L., et al. (2009). Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study. J. Neuroeng. Rehabil. 6 35 10.1186/1743-0003-6-35
    1. Montero-Odasso M., Muir S. W., Speechley M. (2012). Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch. Phys. Med. Rehabil. 93 293–299 10.1016/j.apmr.2011.08.026
    1. Montero-Odasso M., Oteng-Amoako A., Speechley M., Gopaul K., Beauchet O., Annweiler C., et al. (2014). The motor signature of mild cognitive impairment: results from the gait and brain Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 69 1415–1421 10.1093/gerona/glu155
    1. Morgan E. E., Woods S. P., Grant I. (2012). Intra-individual neurocognitive variability confers risk of dependence in activities of daily living among HIV-seropositive individuals without HIV-associated neurocognitive sisorders. Arch. Clin. Neuropsychol. 27 293–303 10.1093/arclin/acs003
    1. Muir S. W., Speechley M., Wells J., Borrie M., Gopaul K., Montero-Odasso M. (2012). Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture 35 96–100 10.1016/j.gaitpost.2011.08.014
    1. Naj A. C., Jun G., Reitz C., Kunkle B. W., Perry W., Park Y. S., et al. (2014). Effects of multiple genetic loci on age at onset in late-onset alzheimer disease. JAMA Neurol. 71 1394–1404 10.1001/jamaneurol.2014.1491
    1. Nesselroade J. R., Salthouse T. A. (2004). Methodological and theoretical implications of intraindividual variability in perceptual-motor performance. J. Gerontol. B Psychol. Sci. Soc. Sci. 59 P49–P55 10.1093/geronb/59.2.P49
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9 97–113 10.1016/0028-3932(71)90067-4
    1. Pelletier A., Periot O., Dilharreguy B., Hiba B., Bordessoules M. Pérès K.,et al. (2013). Structural hippocampal network alterations during healthy aging: a multi-modal MRI study. Front. Aging Neurosci. 5:84 10.3389/fnagi.2013.00084
    1. Perrochon A., Kemoun G., Watelain E., Berthoz A. (2013). Walking stroop carpet: an innovative dual-task concept for detecting cognitive impairment. Clin. Interv. Aging 8 317–28 10.2147/CIA.S38667
    1. Persad C. C., Jones J. L., Ashton-Miller J. A., Alexander N. B., Giordani B. (2008). Executive function and gait in older adults with cognitive impairment. J. Gerontol. A Biol. Sci. Med. Sci. 63 1350–1355 10.1093/gerona/63.12.1350
    1. Petersen R. C. (2003). Mild cognitive impairment clinical trials. Nat. Rev. Drug Discov. 2 646–653 10.1038/nrd1155
    1. Phillips M., Rogers P., Haworth J., Bayer A., Tales A. (2013). Intra-individual reaction time variability in mild cognitive impairment and Alzheimer’s Disease: gender, processing load and speed factors. PLoS ONE 8:e65712 10.1371/journal.pone.0065712
    1. Plancher G., Tirard A., Gyselinck V., Nicolas S., Piolino P. (2012). Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: influence of active and passive encoding. Neuropsychologia 50 592–602 10.1016/j.neuropsychologia.2011.12.013
    1. Portet F., Ousset P. J., Visser P. J., Frisoni G. B., Nobili F., Scheltens P., et al. (2006). Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. report of the MCI working group of the european consortium on Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 77 714–718 10.1136/jnnp.2005.085332
    1. Prestia A., Caroli A., Herholz K., Reiman E., Chen K., Jagust W. J., et al. (2013). Diagnostic accuracy of markers for prodromal Alzheimer’s disease in independent clinical series. Alzheimers Dement. 9 677–686 10.1016/j.jalz.2012.09.016
    1. Radanovic M., Pereira F. R., Stella F., Aprahamian I., Ferreira L. K., Forlenza O. V., et al. (2013). White matter abnormalities associated with Alzheimer’s disease and mild cognitive impairment: a critical review of MRI studies. Expert. Rev. Neurother. 13 483–493 10.1586/ern.13.45
    1. Ramsay M. C., Reynolds C. R. (1995). Separate digits tests: a brief history, a literature review, and a reexamination of the factor structure of the test of memory and learning (TOMAL). Neuropsychol. Rev. 5 151–71 10.1007/BF02214760
    1. Robert P. H., König A., Amieva H., Andrieu S., Bremond F., Bullock R., et al. (2014). Recommendations for the use of serious games in people with Alzheimer’s disease, related disorders and frailty. Front. Aging Neurosci. 6:54 10.3389/fnagi.2014.00054
    1. Rosenberg S. J., Ryan J. J., Prifitera A. (1984). Rey auditory-verbal learning test performance of patients with and without memory impairment. J. Clin. Psychol. 40 785–787 10.1002/1097-4679(198405)40:3<785::AID-JCLP2270400325>;2-4
    1. Sarazin M., Berr C., De Rotrou J., Fabrigoule C., Pasquier F., Legrain S., et al. (2007). Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology 69 1859–1867 10.1212/01.wnl.0000279336.36610.f7
    1. Scherder E., Eggermont L., Visscher C., Scheltens P., Swaab D. (2011). Understanding higher level gait disturbances in mild dementia in order to improve rehabilitation: ‘last in-first out’. Neurosci. Biobehav. Rev. 35 699–714 10.1016/j.neubiorev.2010.08.009
    1. Schroeter M. L., Vogt B., Frisch S., Becker G., Barthel H., Mueller K., et al. (2012). Executive deficits are related to the inferior frontal junction in early dementia. Brain 135(Pt 1), 201–215 10.1093/brain/awr311
    1. Shrout P. E., Fleiss J. L. (1979). Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86 420–428 10.1037/0033-2909.86.2.420
    1. Snowden J. S., Thompson J. C., Stopford C. L., Richardson A. M., Gerhard A., Neary D., et al. (2011). The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain 134(Pt 9), 2478–2492 10.1093/brain/awr189
    1. Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 280–292 10.1016/j.jalz.2011.03.003
    1. Stirling N. (1979). Stroop interference: an input and an output phenomenon. Q. J. Exp. Psychol. 31 121–132 10.1080/14640747908400712
    1. Tales A., Leonards U., Bompas A., Snowden R. J., Philips M., Porter G., et al. (2012). Intra-individual reaction time variability in amnestic mild cognitive impairment: a precursor to dementia? J. Alzheimers. Dis. 32 457–466 10.3233/JAD-2012-120505
    1. Tarnanas I., Schlee W., Tsolaki M., Mril R., Mosimann U., Nef T.(2013). Ecological validity of virtual reality daily living activities screening for early dementia: longitudinal study. JMIR Serious Games 1:e1 10.2196/games.2778
    1. Tarnanas I., Tsolaki M., Nef T. M., Müri R., Mosimann U. P. (2014). Can a novel computerized cognitive screening test provide additional information for early detection of Alzheimer disease? Alzheimer Dement. 10 790–798 10.1016/j.jalz.2014.01.002
    1. Theill N., Martin M., Schumacher V., Bridenbaugh S. A., Kressig R. W. (2011). Simultaneously measuring gait and cognitive performance in cognitively healthy and cognitively impaired older adults: the basel motor-cognition dual-task paradigm. J. Am. Geriatr. Soc. 59 1012–1018 10.1111/j.1532-5415.2011.03429.x
    1. Tombaugh T. N. (2004). Trail making test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 19 203–214 10.1016/S0887-6177(03)00039-8
    1. Vaughan L., Leng I., Dagenbach D., Resnick S. M., Rapp S. R., Jennings J. M., et al. (2013). Intraindividual variability in domain-specific cognition and risk of mild cognitive impairment and dementia. Curr. Gerontol. Geriatr. Res. 2013 495793 10.1155/2013/495793
    1. Verghese J., Wang C., Lipton R. B., Holtzer R., Xue X. (2007). Quantitative gait dysfunction and risk of cognitive decline and dementia. J. Neurol. Neurosurg. Psychiatry 78 929–35 10.1136/jnnp.2006.106914
    1. Waite L. M., Grayson D. A., Piguet O., Creasey H., Bennett H. P., Broe G. A. (2005). Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the sydney older persons study. J. Neurol. Sci. 229–230, 89–93 10.1016/j.jns.2004.11.009
    1. Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49 518–27 10.1016/j.neuropsychologia.2010.12.031
    1. Werner P., Rabinowitz S., Klinger E., Korczyn A. D., Josman N. (2009). Use of the virtual action planning supermarket for the diagnosis of mild cognitive impairment: a preliminary study. Dement. Geriatr. Cogn. Disord. 27 301–309 10.1159/000204915
    1. West R., Murphy K. J., Armilio M. L., Craik F. I., Stuss D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain Cogn. 49 402–419 10.1006/brcg.2001.1507
    1. Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L. O., et al. (2004). Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J. Intern. Med. 256 240–46 10.1111/j.1365-2796.2004.01380.x

Source: PubMed

3
구독하다