Training induces changes in white-matter architecture

Jan Scholz, Miriam C Klein, Timothy E J Behrens, Heidi Johansen-Berg, Jan Scholz, Miriam C Klein, Timothy E J Behrens, Heidi Johansen-Berg

Abstract

Although experience-dependent structural changes have been found in adult gray matter, there is little evidence for such changes in white matter. Using diffusion imaging, we detected a localized increase in fractional anisotropy, a measure of microstructure, in white matter underlying the intraparietal sulcus following training of a complex visuo-motor skill. This provides, to the best of our knowledge, the first evidence for training-related changes in white-matter structure in the healthy human adult brain.

Figures

Figure 1
Figure 1
FA increases after juggling training. (a) Colored voxels represent clusters (corrected p

Figure 2

Gray matter density increases after…

Figure 2

Gray matter density increases after juggling training. (a-d) Red-yellow voxels represent clusters (p…

Figure 2
Gray matter density increases after juggling training. (a-d) Red-yellow voxels represent clusters (p
Comment in
  • Practice makes plasticity.
    Steele CJ, Zatorre RJ. Steele CJ, et al. Nat Neurosci. 2018 Dec;21(12):1645-1646. doi: 10.1038/s41593-018-0280-4. Nat Neurosci. 2018. PMID: 30482944 No abstract available.
Similar articles
Cited by
References
    1. Draganski B, et al. Nature. 2004;427:311–312. - PubMed
    1. Volkmar FR, Greenough WT. Science. 1972;176:1445–1447. - PubMed
    1. Turner AM, Greenough WT. Brain Res. 1985;329:195–203. - PubMed
    1. Demerens C, et al. Proc Natl Acad Sci U S A. 1996;93:9887–9892. - PMC - PubMed
    1. Ishibashi T, et al. Neuron. 2006;49:823–832. - PMC - PubMed
Show all 14 references
Publication types
MeSH terms
Related information
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2
Figure 2
Gray matter density increases after juggling training. (a-d) Red-yellow voxels represent clusters (p

References

    1. Draganski B, et al. Nature. 2004;427:311–312.
    1. Volkmar FR, Greenough WT. Science. 1972;176:1445–1447.
    1. Turner AM, Greenough WT. Brain Res. 1985;329:195–203.
    1. Demerens C, et al. Proc Natl Acad Sci U S A. 1996;93:9887–9892.
    1. Ishibashi T, et al. Neuron. 2006;49:823–832.
    1. Hihara S, et al. Neuropsychologia. 2006;44:2636–2646.
    1. Dancause N, et al. J Neurosci. 2005;25:10167–10179.
    1. Beaulieu C. The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ, editors. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. Elsevier; London: 2009.
    1. Tuch DS, et al. Proc Natl Acad Sci U S A. 2005;102:12212–12217.
    1. Johansen-Berg H, Della-Maggiore V, Behrens TE, Smith SM, Paus T. Neuroimage. 2007;36(Suppl 2):T16–21.
    1. Bengtsson SL, et al. Nat Neurosci. 2005;8:1148–1150.
    1. Driemeyer J, Boyke J, Gaser C, Buchel C, May A. PLoS One. 2008;3:e2669.
    1. Draganski B, et al. J Neurosci. 2006;26:6314–6317.
    1. Fields RD. Trends Neurosci. 2008;31:361–370.

Source: PubMed

3
구독하다