Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness

Natalia Tiberti, Veerle Lejon, Alexandre Hainard, Bertrand Courtioux, Xavier Robin, Natacha Turck, Krister Kristensson, Enock Matovu, John Charles Enyaru, Dieudonné Mumba Ngoyi, Sanjeev Krishna, Sylvie Bisser, Joseph Mathu Ndung'u, Philippe Büscher, Jean-Charles Sanchez, Natalia Tiberti, Veerle Lejon, Alexandre Hainard, Bertrand Courtioux, Xavier Robin, Natacha Turck, Krister Kristensson, Enock Matovu, John Charles Enyaru, Dieudonné Mumba Ngoyi, Sanjeev Krishna, Sylvie Bisser, Joseph Mathu Ndung'u, Philippe Büscher, Jean-Charles Sanchez

Abstract

Background: Post-therapeutic follow-up is essential to confirm cure and to detect early treatment failures in patients affected by sleeping sickness (HAT). Current methods, based on finding of parasites in blood and cerebrospinal fluid (CSF) and counting of white blood cells (WBC) in CSF, are imperfect. New markers for treatment outcome evaluation are needed. We hypothesized that alternative CSF markers, able to diagnose the meningo-encephalitic stage of the disease, could also be useful for the evaluation of treatment outcome.

Methodology/principal findings: Cerebrospinal fluid from patients affected by Trypanosoma brucei gambiense HAT and followed for two years after treatment was investigated. The population comprised stage 2 (S2) patients either cured or experiencing treatment failure during the follow-up. IgM, neopterin, B2MG, MMP-9, ICAM-1, VCAM-1, CXCL10 and CXCL13 were first screened on a small number of HAT patients (n = 97). Neopterin and CXCL13 showed the highest accuracy in discriminating between S2 cured and S2 relapsed patients (AUC 99% and 94%, respectively). When verified on a larger cohort (n = 242), neopterin resulted to be the most efficient predictor of outcome. High levels of this molecule before treatment were already associated with an increased risk of treatment failure. At six months after treatment, neopterin discriminated between cured and relapsed S2 patients with 87% specificity and 92% sensitivity, showing a higher accuracy than white blood cell numbers.

Conclusions/significance: In the present study, neopterin was highlighted as a useful marker for the evaluation of the post-therapeutic outcome in patients suffering from sleeping sickness. Detectable levels of this marker in the CSF have the potential to shorten the follow-up for HAT patients to six months after the end of the treatment.

Conflict of interest statement

I have read the journal's policy and have the following conflicts: V. Lejon, S. Krishna, and P. Büscher were consultants for the Foundation for New Innovative Diagnostics (FIND) at the moment of the analyses. J. Ndung'u is an employee of the Foundation for New Innovative Diagnostics (FIND). All other authors have declared that no competing interests exist.

Figures

Figure 1. Kinetics of neopterin, CXCL13 and…
Figure 1. Kinetics of neopterin, CXCL13 and WBC during the follow-up.
The variation in concentrations of the three markers in S1 cured patients, S2 cured patients and S2 relapsing patients are represented. Median concentrations at each time point are reported. Bars represent inter-quartile intervals. Numbers on the graphs represent the number of CSF samples assessed at each time point for each category of HAT patients. BT: before treatment; EoT: end of treatment; 3 M, 6 M, 12 M: 3, 6, 12 months after treatment. FU: follow-up.

References

    1. Kennedy PG (2008) The continuing problem of human African trypanosomiasis (sleeping sickness). Ann Neurol 64: 116–126.
    1. Malvy D, Chappuis F (2011) Sleeping sickness. Clin Microbiol Infect 17: 986–995.
    1. Simarro PP, Diarra A, Ruiz Postigo JA, Franco JR, Jannin JG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5: e1007.
    1. Simarro PP, Franco J, Diarra A, Postigo JA, Jannin J (2012) Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology 139: 842–846.
    1. Priotto G, Chappuis F, Bastard M, Flevaud L, Etard JF (2012) Early prediction of treatment efficacy in second-stage gambiense human african trypanosomiasis. PLoS Negl Trop Dis 6: e1662.
    1. WHO (1998) Control and surveillance of African trypanosomiasis. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 881: I–VI, 1–114.
    1. Mumba Ngoyi D, Lejon V, N'Siesi FX, Boelaert M, Buscher P (2009) Comparison of operational criteria for treatment outcome in gambiense human African trypanosomiasis. Trop Med Int Health 14: 438–444.
    1. Mumba Ngoyi D, Lejon V, Pyana P, Boelaert M, Ilunga M, et al. (2010) How to shorten patient follow-up after treatment for Trypanosoma brucei gambiense sleeping sickness. J Infect Dis 201: 453–463.
    1. Kennedy PG (2008) Diagnosing central nervous system trypanosomiasis: two stage or not to stage? Trans R Soc Trop Med Hyg 102: 306–307.
    1. WHO (2007) Recommendations of the informal consultation on issues for clinical product development for human African trypanosomiasis. WHO/CDS/NTD/IDM/2007.1.
    1. Lejon V, Buscher P (2005) Review Article: cerebrospinal fluid in human African trypanosomiasis: a key to diagnosis, therapeutic decision and post-treatment follow-up. Trop Med Int Health 10: 395–403.
    1. Truc P, Jamonneau V, Cuny G, Frezil JL (1999) Use of polymerase chain reaction in human African trypanosomiasis stage determination and follow-up. Bull World Health Organ 77: 745–748.
    1. Deborggraeve S, Lejon V, Ekangu RA, Mumba Ngoyi D, Pati Pyana P, et al. (2011) Diagnostic accuracy of PCR in gambiense sleeping sickness diagnosis, staging and post-treatment follow-up: a 2-year longitudinal study. PLoS Negl Trop Dis 5: e972.
    1. Lejon V, Roger I, Mumba Ngoyi D, Menten J, Robays J, et al. (2008) Novel markers for treatment outcome in late-stage Trypanosoma brucei gambiense trypanosomiasis. Clin Infect Dis 47: 15–22.
    1. Tiberti N, Hainard A, Lejon V, Courtioux B, Matovu E, et al. (2012) Cerebrospinal Fluid Neopterin as Marker of the Meningo-Encephalitic Stage of Trypanosoma brucei gambiense Sleeping Sickness. PLoS One 7: e40909.
    1. Amin DN, Rottenberg ME, Thomsen AR, Mumba D, Fenger C, et al. (2009) Expression and role of CXCL10 during the encephalitic stage of experimental and clinical African trypanosomiasis. J Infect Dis 200: 1556–1565.
    1. Amin DN, Ngoyi DM, Nhkwachi GM, Palomba M, Rottenberg M, et al. (2010) Identification of stage biomarkers for human African trypanosomiasis. Am J Trop Med Hyg 82: 983–990.
    1. Hainard A, Tiberti N, Robin X, Lejon V, Ngoyi DM, et al. (2009) A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients. PLoS Negl Trop Dis 3: e459.
    1. Courtioux B, Pervieux L, Vatunga G, Marin B, Josenando T, et al. (2009) Increased CXCL-13 levels in human African trypanosomiasis meningo-encephalitis. Trop Med Int Health 14: 529–534.
    1. Hainard A, Tiberti N, Robin X, Ngoyi DM, Matovu E, et al. (2011) Matrix metalloproteinase-9 and intercellular adhesion molecule 1 are powerful staging markers for human African trypanosomiasis. Trop Med Int Health 16: 119–126.
    1. Tiberti N, Hainard A, Lejon V, Robin X, Ngoyi DM, et al. (2010) Discovery and verification of osteopontin and Beta-2-microglobulin as promising markers for staging human African trypanosomiasis. Mol Cell Proteomics 9: 2783–2795.
    1. Lejon V, Reiber H, Legros D, Dje N, Magnus E, et al. (2003) Intrathecal immune response pattern for improved diagnosis of central nervous system involvement in trypanosomiasis. J Infect Dis 187: 1475–1483.
    1. Bisser S, Lejon V, Preux PM, Bouteille B, Stanghellini A, et al. (2002) Blood-cerebrospinal fluid barrier and intrathecal immunoglobulins compared to field diagnosis of central nervous system involvement in sleeping sickness. J Neurol Sci 193: 127–135.
    1. Miezan TW, Meda HA, Doua F, Dje NN, Lejon V, et al. (2000) Single centrifugation of cerebrospinal fluid in a sealed pasteur pipette for simple, rapid and sensitive detection of trypanosomes. Trans R Soc Trop Med Hyg 94: 293.
    1. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77.
    1. Deeks JJ, Altman DG (2004) Diagnostic tests 4: likelihood ratios. BMJ 329: 168–169.
    1. Robays J, Nyamowala G, Sese C, Betu Ku Mesu Kande V, Lutumba P, et al. (2008) High failure rates of melarsoprol for sleeping sickness, Democratic Republic of Congo. Emerg Infect Dis 14: 966–967.
    1. Hoffmann G, Wirleitner B, Fuchs D (2003) Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm Res 52: 313–321.
    1. Kristensson K, Nygard M, Bertini G, Bentivoglio M (2010) African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions. Prog Neurobiol 91: 152–171.
    1. Priotto G, Kasparian S, Ngouama D, Ghorashian S, Arnold U, et al. (2007) Nifurtimox-eflornithine combination therapy for second-stage Trypanosoma brucei gambiense sleeping sickness: a randomized clinical trial in Congo. Clin Infect Dis 45: 1435–1442.
    1. Berdowska A, Zwirska-Korczala K (2001) Neopterin measurement in clinical diagnosis. J Clin Pharm Ther 26: 319–329.
    1. Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, et al. (2010) Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 7: 15.
    1. Ngotho M, Kagira JM, Jensen HE, Karanja SM, Farah IO, et al. (2009) Immunospecific immunoglobulins and IL-10 as markers for Trypanosoma brucei rhodesiense late stage disease in experimentally infected vervet monkeys. Trop Med Int Health 14: 736–747.
    1. Peeling RW, Mabey D, Herring A, Hook EW 3rd (2006) Why do we need quality-assured diagnostic tests for sexually transmitted infections? Nat Rev Microbiol 4: S7–19.

Source: PubMed

3
구독하다