Metabolomics Identifies Multiple Candidate Biomarkers to Diagnose and Stage Human African Trypanosomiasis

Isabel M Vincent, Rónán Daly, Bertrand Courtioux, Amy M Cattanach, Sylvain Biéler, Joseph M Ndung'u, Sylvie Bisser, Michael P Barrett, Isabel M Vincent, Rónán Daly, Bertrand Courtioux, Amy M Cattanach, Sylvain Biéler, Joseph M Ndung'u, Sylvie Bisser, Michael P Barrett

Abstract

Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of "sleeping sickness". Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Current diagnosis of HAT.
Fig 1. Current diagnosis of HAT.
CATT: card agglutination test for trypanosomiasis. CSF: cerebrospinal fluid. RDT: Rapid Diagnostic Test.
Fig 2. Variation in metabolic coverage of…
Fig 2. Variation in metabolic coverage of each biofluid.
The percentage shows the number of metabolites detected in each metabolic class (based on matches to the IDEOM database) as a percentage of the total number of metabolites detected in all three groups. Unannotated peaks: masses with no IDEOM database match, no annotated pathway: metabolites that did not match databases for known metabolic pathways. Medium components are those that are commonly found in trypanosome growth medium.
Fig 3. Variability across urine samples.
Fig 3. Variability across urine samples.
(A) Total ion chromatograms (TICs) show the range in concentration of the ions between samples. Ions are analysed in positive (top) and negative (bottom) ionisation modes. The control group is shown as an example. (B) Principal components analysis shows a lack of separation of the sample groups in raw data.
Fig 4. Separation between the metabolite patterns…
Fig 4. Separation between the metabolite patterns of stage 1 and advanced stage 2 CSF samples.
(A) Principal components analysis plot. (B) Histograms for metabolites showing significant differences between control (C), stage 1 (S1) and advanced stage 2 (S2) infected patients. * indicates p

Fig 5. Patients can be classified into…

Fig 5. Patients can be classified into stage 1 and advanced stage 2 groups using…

Fig 5. Patients can be classified into stage 1 and advanced stage 2 groups using eleven biomarkers in CSF.
O-acetylcarnitine and tryptophan match to authentic standards. Some masses did not match to metabolites in the IDEOM [32] database and are identified by the mass only. Red shading indicates peak area intensities above/below the cut-off for advanced stage 2 disease. More information on the cut-offs are shown in S4 Table.

Fig 6. Sleep-inducing metabolites linoleamide and oleamide…

Fig 6. Sleep-inducing metabolites linoleamide and oleamide were increased in both stage 1 and advanced…

Fig 6. Sleep-inducing metabolites linoleamide and oleamide were increased in both stage 1 and advanced stage 2 patients.
Bars show the mean and the standard error of the mean. Metabolite annotations are by mass only. Relative intensities measure peak areas. * indicates p

Fig 7. Metabolite differences in plasma are…

Fig 7. Metabolite differences in plasma are small, but significant.

(A) Principal components analysis. (B)…

Fig 7. Metabolite differences in plasma are small, but significant.
(A) Principal components analysis. (B) Extracted peaks for m/z 133 (ornithine) and m/z 216 (aminododecanoic acid). Stage 1: green, advanced stage 2: blue. (C) Histograms for m/z 133 and m/z 216 (relative intensities measure peak areas). ** indicates a p-value of
All figures (7)
Similar articles
Cited by
References
    1. Buguet A. Is sleeping sickness a circadian disorder? The serotonergic hypothesis. Chronobiol Int.1999;16: 477–89. Available: http://www.ncbi.nlm.nih.gov/pubmed/10442241 - PubMed
    1. Giordani F, Mwenechanya R, Barrett M. Advances in understanding and treatment of human African trypanosomiasis: divergent diseases caused by distinct parasites In: Padmanabhan S, editor. Handbook of pharmacogenomics and stratified medicine. Academic Press; 2014. pp. 901–916. <10.1016/B978-0-12-386882-4.00039-6>) - DOI
    1. Horn D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol. 2014;195: 123–129. 10.1016/j.molbiopara.2014.05.001 - DOI - PMC - PubMed
    1. Barrett MP, Boykin DW, Brun R, Tidwell RR. Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol. 2007;152: 1155–71. 10.1038/sj.bjp.0707354 - DOI - PMC - PubMed
    1. Steinmann P, Stone CM, Sutherland CS, Tanner M, Tediosi F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: review. Trop Med Int Heal. 2015;20: 717–18. - PubMed
Show all 63 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig 5. Patients can be classified into…
Fig 5. Patients can be classified into stage 1 and advanced stage 2 groups using eleven biomarkers in CSF.
O-acetylcarnitine and tryptophan match to authentic standards. Some masses did not match to metabolites in the IDEOM [32] database and are identified by the mass only. Red shading indicates peak area intensities above/below the cut-off for advanced stage 2 disease. More information on the cut-offs are shown in S4 Table.
Fig 6. Sleep-inducing metabolites linoleamide and oleamide…
Fig 6. Sleep-inducing metabolites linoleamide and oleamide were increased in both stage 1 and advanced stage 2 patients.
Bars show the mean and the standard error of the mean. Metabolite annotations are by mass only. Relative intensities measure peak areas. * indicates p

Fig 7. Metabolite differences in plasma are…

Fig 7. Metabolite differences in plasma are small, but significant.

(A) Principal components analysis. (B)…

Fig 7. Metabolite differences in plasma are small, but significant.
(A) Principal components analysis. (B) Extracted peaks for m/z 133 (ornithine) and m/z 216 (aminododecanoic acid). Stage 1: green, advanced stage 2: blue. (C) Histograms for m/z 133 and m/z 216 (relative intensities measure peak areas). ** indicates a p-value of
All figures (7)
Similar articles
Cited by
References
    1. Buguet A. Is sleeping sickness a circadian disorder? The serotonergic hypothesis. Chronobiol Int.1999;16: 477–89. Available: http://www.ncbi.nlm.nih.gov/pubmed/10442241 - PubMed
    1. Giordani F, Mwenechanya R, Barrett M. Advances in understanding and treatment of human African trypanosomiasis: divergent diseases caused by distinct parasites In: Padmanabhan S, editor. Handbook of pharmacogenomics and stratified medicine. Academic Press; 2014. pp. 901–916. <10.1016/B978-0-12-386882-4.00039-6>) - DOI
    1. Horn D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol. 2014;195: 123–129. 10.1016/j.molbiopara.2014.05.001 - DOI - PMC - PubMed
    1. Barrett MP, Boykin DW, Brun R, Tidwell RR. Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol. 2007;152: 1155–71. 10.1038/sj.bjp.0707354 - DOI - PMC - PubMed
    1. Steinmann P, Stone CM, Sutherland CS, Tanner M, Tediosi F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: review. Trop Med Int Heal. 2015;20: 717–18. - PubMed
Show all 63 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 7. Metabolite differences in plasma are…
Fig 7. Metabolite differences in plasma are small, but significant.
(A) Principal components analysis. (B) Extracted peaks for m/z 133 (ornithine) and m/z 216 (aminododecanoic acid). Stage 1: green, advanced stage 2: blue. (C) Histograms for m/z 133 and m/z 216 (relative intensities measure peak areas). ** indicates a p-value of
All figures (7)

References

    1. Buguet A. Is sleeping sickness a circadian disorder? The serotonergic hypothesis. Chronobiol Int.1999;16: 477–89. Available:
    1. Giordani F, Mwenechanya R, Barrett M. Advances in understanding and treatment of human African trypanosomiasis: divergent diseases caused by distinct parasites In: Padmanabhan S, editor. Handbook of pharmacogenomics and stratified medicine. Academic Press; 2014. pp. 901–916. <10.1016/B978-0-12-386882-4.00039-6>)
    1. Horn D. Antigenic variation in African trypanosomes. Mol Biochem Parasitol. 2014;195: 123–129. 10.1016/j.molbiopara.2014.05.001
    1. Barrett MP, Boykin DW, Brun R, Tidwell RR. Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol. 2007;152: 1155–71. 10.1038/sj.bjp.0707354
    1. Steinmann P, Stone CM, Sutherland CS, Tanner M, Tediosi F. Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: review. Trop Med Int Heal. 2015;20: 717–18.
    1. Jacobs RT, Nare B, Wring SA, Orr MD, Chen D, Sligar JM, et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl Trop Dis. 2011;5: e1151 10.1371/journal.pntd.0001151
    1. Chappuis F, Loutan L, Simarro P, Lejon V, Büscher P. Options for field diagnosis of human african trypanosomiasis. Clin Microbiol Rev. 2005;18: 133–46. 10.1128/CMR.18.1.133-146.2005
    1. Steverding D. The history of African trypanosomiasis. Parasit Vectors. 2008;1: 3 10.1186/1756-3305-1-3
    1. Global Health Observatory Data Repository. World Health Organization;
    1. LONDON DECLARATION ON NEGLECTED TROPICAL DISEASES [Internet]. [cited 31 Aug 2015].
    1. Sternberg JM, Gierliński M, Biéler S, Ferguson MAJ, Ndung’u JM. Evaluation of the diagnostic accuracy of prototype rapid tests for human African trypanosomiasis. PLoS Negl Trop Dis. 2014;8: e3373 10.1371/journal.pntd.0003373
    1. Bisser S, Lumbala C, Nguertoum E, Kande V, Flevaud L, Vatunga G. Sensitivity and specificity of a prototype rapid diagnostic test for the detection of Trypanosoma brucei gambiense infection: a multi-centric prospective study. PLoS Negl Trop Dis. 2016;In press.
    1. Hayashida K, Kajino K, Hachaambwa L, Namangala B, Sugimoto C. Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for Human African Trypanosomiasis. PLoS Negl Trop Dis. 2015;9: e0003578 10.1371/journal.pntd.0003578
    1. Maclean L, Odiit M, Sternberg JM. Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. Trans R Soc Trop Med Hyg. 2006;100: 270–5. 10.1016/j.trstmh.2005.03.013
    1. Tiberti N, Matovu E, Hainard A, Enyaru JC, Lejon V, Robin X, et al. New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients. Clin Transl Med. 2013;2: 1 10.1186/2001-1326-2-1
    1. Tiberti N, Lejon V, Hainard A, Courtioux B, Robin X, Turck N, et al. Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis. 2013;7: e2088 10.1371/journal.pntd.0002088
    1. Biemba G, Gordeuk VR, Thuma P, Weiss G. Markers of inflammation in children with severe malarial anaemia. Trop Med Int Health. 2000;5: 256–62. Available:
    1. Skogmar S, Schön T, Balcha TT, Sturegård E, Jansson M, Björkman P. Plasma Levels of Neopterin and C-Reactive Protein (CRP) in Tuberculosis (TB) with and without HIV Coinfection in Relation to CD4 Cell Count. PLoS One. 2015;10: e0144292 10.1371/journal.pone.0144292
    1. Kagira JM, Maina N, Njenga J, Karanja SM, Karori SM, Ngotho JM. Prevalence and types of coinfections in sleeping sickness patients in kenya (2000/2009). J Trop Med. 2011;2011: 248914 10.1155/2011/248914
    1. Kato CD, Nanteza A, Mugasa C, Edyelu A, Matovu E, Alibu VP. Clinical profiles, disease outcome and co-morbidities among T. b. rhodesiense sleeping sickness patients in Uganda. PLoS One. 2015;10: e0118370 10.1371/journal.pone.0118370
    1. Zaidi SA, Shin JH. Recent developments in nanostructure based electrochemical glucose sensors. Talanta. 2015;149: 30–42. 10.1016/j.talanta.2015.11.033
    1. Stenman U-H, Alfthan H. Determination of human chorionic gonadotropin. Best Pract Res Clin Endocrinol Metab. 2013;27: 783–93. 10.1016/j.beem.2013.10.005
    1. Matsushita K, Ballew SH, Coresh J. Influence of chronic kidney disease on cardiac structure and function. Curr Hypertens Rep. 2015;17: 581 10.1007/s11906-015-0581-x
    1. Scheltema RA, Jankevics A, Jansen RC, Swertz MA, Breitling R. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem. 2011;83: 2786–93. 10.1021/ac2000994
    1. Lamour SD, Gomez-Romero M, Vorkas PA, Alibu VP, Saric J, Holmes E, et al. Discovery of Infection Associated Metabolic Markers in Human African Trypanosomiasis. PLoS Negl Trop Dis. 2015;9: e0004200 10.1371/journal.pntd.0004200
    1. Reithinger R, Grijalva MJ, Chiriboga RF, de Noya BA, Torres JR, Pavia-Ruz N, et al. Rapid detection of Trypanosoma cruzi in human serum by use of an immunochromatographic dipstick test. J Clin Microbiol. 2010;48: 3003–7. 10.1128/JCM.02474-09
    1. Zillmann U, Albiez EJ. The Testryp CATT (Card Agglutination Test for Trypanosomiasis): a field study on gambiense sleeping sickness in Liberia. Trop Med Parasitol Off organ Dtsch Tropenmedizinische Gesellschaft Dtsch Gesellschaft für Tech Zusammenarbeit. 1986;37: 390–2. Available:
    1. Sheehan D V, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59 Suppl 2: 22–33;quiz 34–57. Available:
    1. Büscher P, Mumba Ngoyi D, Kaboré J, Lejon V, Robays J, Jamonneau V, et al. Improved Models of Mini Anion Exchange Centrifugation Technique (mAECT) and Modified Single Centrifugation (MSC) for sleeping sickness diagnosis and staging. PLoS Negl Trop Dis. 2009;3: e471 10.1371/journal.pntd.0000471
    1. Vincent IM, Creek DJ, Burgess K, Woods DJ, Burchmore RJS, Barrett MP. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. PLoS Negl Trop Dis. 2012;6: e1618 10.1371/journal.pntd.0001618
    1. Vincent IM, Ehmann DE, Mills S, Perros M, Barrett MP. Untargeted metabolomics to ascertain antibiotic modes of action. Antimicrob Agents Chemother. 2016; AAC.02109–15.
    1. Creek DJ, Jankevics A, Burgess KE V, Breitling R, Barrett MP. IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics. 2012;28: 1048–9. 10.1093/bioinformatics/bts069
    1. Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6: 743–60. 10.1038/nprot.2011.319
    1. Creek DJ, Jankevics A, Breitling R, Watson DG, Barrett MP, Burgess KE V. Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem. 2011;83: 8703–10. 10.1021/ac2021823
    1. Gelman A, Jakulin A, Pittau MG, Su Y-S. A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat. 2008;2: 1360–1383.
    1. Kuhn M. Building Predictive Models in R Using the caret Package. J Stat Softw. 2008;28: 1–26.
    1. Worboys M. The Hamilton Rating Scale for Depression: The making of a “gold standard” and the unmaking of a chronic illness, 1960–1980. Chronic Illn. 2013;9: 202–19. 10.1177/1742395312467658
    1. Peironcely JE, Rojas-Chertó M, Tas A, Vreeken R, Reijmers T, Coulier L, et al. Automated pipeline for de novo metabolite identification using mass-spectrometry-based metabolomics. Anal Chem. 2013;85: 3576–83. 10.1021/ac303218u
    1. Creek DJ, Nijagal B, Kim D-H, Rojas F, Matthews KR, Barrett MP. Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother. 2013;57: 2768–79. 10.1128/AAC.00044-13
    1. Warrack BM, Hnatyshyn S, Ott K-H, Reily MD, Sanders M, Zhang H, et al. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877: 547–52. 10.1016/j.jchromb.2009.01.007
    1. Connell FA, Koepsell TD. Measures of gain in certainty from a diagnostic test. Am J Epidemiol. 1985;121: 744–53. Available:
    1. Vaniya A, Fiehn O. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics. Trends Analyt Chem. 2015;69: 52–61. 10.1016/j.trac.2015.04.002
    1. Sugiura T, Kondo S, Kodaka T, Tonegawa T, Nakane S, Yamashita A, et al. Enzymatic synthesis of oleamide (cis-9, 10-octadecenoamide), an endogenous sleep-inducing lipid, by rat brain microsomes. Biochem Mol Biol Int. 1996;40: 931–8. Available:
    1. Megnekou R, Djontu JC, Bigoga JD, Medou FM, Tenou S, Lissom A. Impact of placental Plasmodium falciparum malaria on the profile of some oxidative stress biomarkers in women living in Yaoundé, Cameroon. PLoS One. 2015;10: e0134633 10.1371/journal.pone.0134633
    1. Denery JR, Nunes AAK, Hixon MS, Dickerson TJ, Janda KD. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl Trop Dis. 2010;4.
    1. Tosoian JJ, Ross AE, Sokoll LJ, Partin AW, Pavlovich CP. Urinary Biomarkers for Prostate Cancer. Urol Clin North Am. 2016;43: 17–38. 10.1016/j.ucl.2015.08.003
    1. Netto GJ, Tafe LJ. Emerging Bladder Cancer Biomarkers and Targets of Therapy. Urol Clin North Am. 2016;43: 63–76. 10.1016/j.ucl.2015.08.006
    1. An M, Gao Y. Urinary Biomarkers of Brain Diseases. Genomics Proteomics Bioinformatics. 2016;
    1. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123: 1299–309. 10.1172/JCI67677
    1. Tiberti N, Hainard A, Lejon V, Courtioux B, Matovu E, Enyaru JC, et al. Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness. PLoS One. 2012;7: e40909 10.1371/journal.pone.0040909
    1. Zerlotti H, Grotto W, Costa FF, Carnéiro M V, Galiza Neto GC. Serum neopterin in patients with Chagas disease. Trans R Soc Trop Med Hyg. 88: 75 Available:
    1. Rodgers J, Stone TW, Barrett MP, Bradley B, Kennedy PGE. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis. Brain. 2009;132: 1259–67. 10.1093/brain/awp074
    1. Newport GR, Page CR, Ashman PU, Stibbs HH, Seed JR. Alteration of free serum amino acids in voles infected with Trypanosoma brucei gambiense. J Parasitol. 1977;63: 15–24. Available:
    1. Stibbs HH, Seed JR. Short-term metabolism of (14-C) tryptophan in rats infected with Trypanosoma brucei gambiense. J Infect Dis. 1975;131: 459–62. Available:
    1. Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol. 2015;40: 134–41. 10.1016/j.semcdb.2015.03.002
    1. Andreou D, Söderman E, Axelsson T, Sedvall GC, Terenius L, Agartz I, et al. Polymorphisms in genes implicated in dopamine, serotonin and noradrenalin metabolism suggest association with cerebrospinal fluid monoamine metabolite concentrations in psychosis. Behav Brain Funct. 2014;10: 26 10.1186/1744-9081-10-26
    1. Brun L, Ngu LH, Keng WT, Ch’ng GS, Choy YS, Hwu WL, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010;75: 64–71. 10.1212/WNL.0b013e3181e620ae
    1. Meyers S. Use of neurotransmitter precursors for treatment of depression. Altern Med Rev. 2000;5: 64–71. Available:
    1. Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, et al. Chemical characterization of a family of brain lipids that induce sleep. Science. 1995;268: 1506–9. Available:
    1. Hirohashi A, Nagata A, Miyawaki H, Nakatani H, Toki K. Metabolism of linoleamides. I. Absorption, excretion and metabolism of N-(alpha-methylbenzyl)linoleamide in rat and man. Xenobiotica. 1976;6: 329–37. 10.3109/00498257609151644
    1. Nagata A. Metabolism of linoleamides. II. Absorption, distribution, excretion and metabolism of N-[alpha-phenyl-beta-(p-tolyl)ethyl]linoleamide. Xenobiotica. 1976;6: 339–44. 10.3109/00498257609151645
    1. Buguet A, Bisser S, Josenando T, Chapotot F, Cespuglio R. Sleep structure: a new diagnostic tool for stage determination in sleeping sickness. Acta Trop. 2005;93: 107–17. 10.1016/j.actatropica.2004.10.001
    1. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3: 211–221. 10.1007/s11306-007-0082-2

Source: PubMed

3
구독하다