Nerve growth factor variations in patients with mood disorders: no changes in eight weeks of clinical treatment

Xiaohua Liu, Tianhong Zhang, Shen He, Bo Hong, Daihui Peng, Hui Su, Fei Li, Yingying Tang, Zhiguang Lin, Yiru Fang, Kaida Jiang, Xiaohua Liu, Tianhong Zhang, Shen He, Bo Hong, Daihui Peng, Hui Su, Fei Li, Yingying Tang, Zhiguang Lin, Yiru Fang, Kaida Jiang

Abstract

Background: Nerve growth factor (NGF) has received much attention for its role in mood disorders. The primary objective of the present study was to examine serum NGF levels in Chinese inpatients with depressive or manic episodes in the acute phase and to explore the changes in NGF levels after effective clinical treatments.

Methods: One hundred and seven consecutive inpatients and outpatients with mood disorders (30 with unipolar depression, 23 with bipolar depression, and 54 with bipolar mania), and 50 healthy controls were recruited. The serum NGF levels were detected by enzyme-linked immunosorbent assay.

Results: Patients with bipolar mania presented higher serum NGF levels compared to those of healthy controls. After 8 weeks of medical treatment, there were significant improvements in symptoms in patients, but no significant changes in NGF levels.

Conclusion: The present findings may help to strengthen and expand the understanding of the role of NGF in the acute stages of mood disorders.

Keywords: acute phase; bipolar disorder; clinical sample; depression; mania; neurotrophins.

Figures

Figure 1
Figure 1
Box plot of the differences in serum nerve growth factor (NGF) levels among the different groups. Notes: The P-values of the comparisons between the groups were calculated by the nonparametric Mann–Whitney test. *P<0.05.
Figure 2
Figure 2
Mean nerve growth factor (NGF) value variations after 8 weeks of treatment of patients with unipolar depression, bipolar depression, or bipolar mania.

References

    1. Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A. Development of a non invasive NGF-based therapy for Alzheimer’s disease. Curr Alzheimer Res. 2009;6(2):158–170.
    1. Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med. 2005;11(5):551–555.
    1. Schulte-Herbruggen O, Chourbaji S, Muller H, et al. Differential regulation of nerve growth factor and brain-derived neurotrophic factor in a mouse model of learned helplessness. Exp Neurol. 2006;202(2):404–409.
    1. Schulte-Herbruggen O, Fuchs E, Abumaria N, et al. Effects of escitalopram on the regulation of brain-derived neurotrophic factor and nerve growth factor protein levels in a rat model of chronic stress. J Neurosci Res. 2009;87(11):2551–2560.
    1. Della FP, Abelaira HM, Reus GZ, et al. Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats. Metab Brain Dis. 2013;28(1):93–105.
    1. Sendtner M, Pei G, Beck M, Schweizer U, Wiese S. Developmental motoneuron cell death and neurotrophic factors. Cell Tissue Res. 2000;301(1):71–84.
    1. Linker R, Gold R, Luhder F. Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol. 2009;29(1):43–68.
    1. Hellweg R, Thomas H, Arnswald A, et al. Serotonergic lesion of median raphe nucleus alters nerve growth factor content and vulnerability of cholinergic septohippocampal neurons in rat. Brain Res. 2001;907(1–2):100–108.
    1. Rattray M. Is there nicotinic modulation of nerve growth factor? Implications for cholinergic therapies in Alzheimer’s disease. Biol Psychiatry. 2001;49(3):185–193.
    1. Counts SE, Mufson EJ. Noradrenaline activation of neurotrophic pathways protects against neuronal amyloid toxicity. J Neurochem. 2010;113(3):649–660.
    1. Barbosa IG, Huguet RB, Neves FS, et al. Impaired nerve growth factor homeostasis in patients with bipolar disorder. World J Biol Psychiatry. 2011;12(3):228–232.
    1. Kapczinski F, Frey BN, Kauer-Sant’Anna M, Grassi-Oliveira R. Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder. Expert Rev Neurother. 2008;8(7):1101–1113.
    1. Diniz BS, Teixeira AL, Machado-Vieira R, Talib LL, Gattaz WF, Forlenza OV. Reduced serum nerve growth factor in patients with late-life depression. Am J Geriatr Psychiatry. 2013;21(5):493–496.
    1. Ziegenhorn AA, Schulte-Herbruggen O, Danker-Hopfe H, et al. Serum neurotrophins – a study on the time course and influencing factors in a large old age sample. Neurobiol Aging. 2007;28(9):1436–1445.
    1. Rybakowski JK, Permoda-Osip A, Skibinska M, Adamski R, Bartkowska-Sniatkowska A. Single ketamine infusion in bipolar depression resistant to antidepressants: are neurotrophins involved? Hum Psychopharmacol. 2013;28(1):87–90.
    1. Cirulli F, Francia N, Branchi I, et al. Changes in plasma levels of BDNF and NGF reveal a gender-selective vulnerability to early adversity in rhesus macaques. Psychoneuroendocrinology. 2009;34(2):172–180.
    1. Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M. The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res. 2010;221(2):515–526.
    1. Reus GZ, Stringari RB, Ribeiro KF, et al. Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochem Res. 2011;36(3):460–466.
    1. Martino M, Rocchi G, Escelsior A, et al. NGF serum levels variations in major depressed patients receiving duloxetine. Psychoneuroendocrinology. 2013;38(9):1824–1828.
    1. Alleva E, Petruzzi S, Cirulli F, Aloe L. NGF regulatory role in stress and coping of rodents and humans. Pharmacol Biochem Behav. 1996;54(1):65–72.
    1. Faure J, Uys JD, Marais L, Stein DJ, Daniels WM. Early maternal separation followed by later stressors leads to dysregulation of the HPA-axis and increases in hippocampal NGF and NT-3 levels in a rat model. Metab Brain Dis. 2006;21(2–3):181–188.
    1. Della Seta D, de Acetis L, Aloe L, Alleva E. NGF effects on hot plate behaviors in mice. Pharmacol Biochem Behav. 1994;49(3):701–705.
    1. Aloe L, Bracci-Laudiero L, Alleva E, Lambiase A, Micera A, Tirassa P. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc Natl Acad Sci U S A. 1994;91(22):10440–10444.
    1. Aloe L, Moroni R, Mollinari C, Tirassa P. Schistosoma mansoni infection enhances the levels of NGF in the liver and hypothalamus of mice. Neurorepor. 1994;5(9):1030–1032.
    1. Maestripieri D, De Simone R, Aloe L, Alleva E. Social status and nerve growth factor serum levels after agonistic encounters in mice. Physiol Behav. 1990;47(1):161–164.
    1. Cirulli F, Alleva E, Antonelli A, Aloe L. NGF expression in the developing rat brain: effects of maternal separation. Brain Res Dev Brain Res. 2000;123(2):129–134.
    1. Korsching S, Auburger G, Heumann R, Scott J, Thoenen H. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J. 1985;4(6):1389–1393.
    1. Sokolski KN, DeMet EM. Cholinergic sensitivity predicts severity of mania. Psychiatry Res. 2000;95(3):195–200.
    1. Hassanzadeh P, Rahimpour S. The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology (Berl) 2011;215(1):129–141.
    1. Martinotti G, Di Iorio G, Marini S, Ricci V, De Berardis D, Di Giannantonio M. Nerve growth factor and brain-derived neurotrophic factor concentrations in schizophrenia: a review. J Biol Regul Homeost Agents. 2012;26(3):347–356.
    1. Pillai A, Terry AV, Jr, Mahadik SP. Differential effects of long-term treatment with typical and atypical antipsychotics on NGF and BDNF levels in rat striatum and hippocampus. Schizophr Res. 2006;82(1):95–106.

Source: PubMed

3
구독하다