Extended amygdala connectivity changes during sustained shock anticipation

Salvatore Torrisi, Adam X Gorka, Javier Gonzalez-Castillo, Katherine O'Connell, Nicholas Balderston, Christian Grillon, Monique Ernst, Salvatore Torrisi, Adam X Gorka, Javier Gonzalez-Castillo, Katherine O'Connell, Nicholas Balderston, Christian Grillon, Monique Ernst

Abstract

The bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) of the extended amygdala are small, anatomically interconnected brain regions. They are thought to mediate responses to sustained, unpredictable threat stimuli and phasic, predictable threat stimuli, respectively. They perform these operations largely through their interconnected networks. In two previous studies, we mapped and contrasted the resting functional connectivity networks of the BNST and CeA at 7 Tesla with high resolution. This follow-up study investigates the changes in functional connectivity of these structures during sustained anticipation of electric shock. Results show that the BNST and CeA become less strongly coupled with the ventromedial prefrontal cortex (vmPFC), cingulate, and nucleus accumbens in shock threat relative to a safety condition. In addition, the CeA becomes more strongly coupled with the thalamus under threat. An exploratory, whole-brain connectivity analysis reveals that, although the BNST/CeA exhibits generally decreased connectivity, many other cortical regions demonstrate greater coupling under threat than safety. Understanding the differential network structures of these two regions and how they contribute to processing under threat will help elucidate the building blocks of the anxious state.

Trial registration: ClinicalTrials.gov NCT00047853 NCT00001360.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1. Resting connectivity during safety blocks.
Fig. 1. Resting connectivity during safety blocks.
a BNST functional connectivity. b CeA functional connectivity. Results thresholded at p < 1 × 10−7, k = 100. Results in these and subsequent figures are overlaid on the average of subjects’ structural scans
Fig. 2. BNST connectivity, threat vs. safety…
Fig. 2. BNST connectivity, threat vs. safety contrast.
a Axial slice of medial prefrontal cortex (mPFC). b Sagittal slice of posterior cingulate. c Sagittal slice of posterior cingulate. d Coronal slice of nucleus accumbens. e Axial slice of ventromedial PFC (vmPFC). f Sagittal slice of ventrolateral prefrontal cortex (vlPFC). Figure thresholded at p < 0.005, k = 54. Note that here negative t-statistics represent greater positive connectivity during the safety condition, and not negative connectivity
Fig. 3. CeA connectivity, threat vs. safety…
Fig. 3. CeA connectivity, threat vs. safety contrast.
Axial slice results: a ventromedial prefrontal cortex (vmPFC). b Right ventral–anterior nucleus of the thalamus. Color scheme is the same as Fig. 2
Fig. 4. Qualitative exploratory analysis.
Fig. 4. Qualitative exploratory analysis.
a 109 region correlation matrix, as contrasted Threat > Safety. b Mean correlations (i.e., 4 A matrix columns collapsed) with SD lines in red. See Table 2 for regions above and below 1 SD from mean. c Ventral to dorsal axial slices of > ± 1 SD regions visualized on the brain: positive correlation regions red, negative correlation regions blue. d Thresholding in (b) and (c) was arbitrarily set at 1 SD; however, the observation that more regions were on average more positively connected during threat than safety is invariant to thresholding (red greater than blue line across thresholds: down arrow points to 1 SD point)

References

    1. Lissek S, et al. Classical fear conditioning in the anxiety disorders: a meta-analysis. Behav. Res. Ther. 2005;43:1391–1424. doi: 10.1016/j.brat.2004.10.007.
    1. Ressler KJ. Amygdala activity, fear, and anxiety: modulation by stress. Biol. Psychiatry. 2010;67:1117–1119. doi: 10.1016/j.biopsych.2010.04.027.
    1. LeDoux Joseph E., Pine Daniel S. Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework. American Journal of Psychiatry. 2016;173(11):1083–1093. doi: 10.1176/appi.ajp.2016.16030353.
    1. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010;35:105–135. doi: 10.1038/npp.2009.109.
    1. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol. Psychiatry. 2001;6:13–34. doi: 10.1038/sj.mp.4000812.
    1. Perusini JN, Fanselow MS. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 2015;22:417–425. doi: 10.1101/lm.039180.115.
    1. Shackman AJ, Fox AS. Contributions of the central extended amygdala to fear and anxiety. J. Neurosci. 2016;36:8050–8063. doi: 10.1523/JNEUROSCI.0982-16.2016.
    1. Gungor NZ, Pare D. Functional heterogeneity in the bed nucleus of the stria terminalis. J. Neurosci. 2016;36:8038–8049. doi: 10.1523/JNEUROSCI.0856-16.2016.
    1. Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409.
    1. Smith SM, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA. 2009;106:13040–13045. doi: 10.1073/pnas.0905267106.
    1. Robinson OJ, Charney DR, Overstreet C, Vytal KE, Grillon C. The adaptive threat bias in anxiety: Amygdala–dorsomedial prefrontal cortex coupling and aversive amplification. Neuroimage. 2012;60:523–529. doi: 10.1016/j.neuroimage.2011.11.096.
    1. Schultz DH, Balderston N, Helmstetter FJ. Resting-state connectivity of the amygdala is altered following Pavlovian fear conditioning. Front. Hum. Neurosci. 2012;6:242. doi: 10.3389/fnhum.2012.00242.
    1. Heimer, L., Van Hoesen, G. W., Trimble, M., Zahm, D. S. Anatomy of Neuropsychiatry: The New Anatomy of the Basal Forebrain and Its Implications for Neuropsychiatric Illness 1st edn. (Amsterdam, Academic Press, 2007).
    1. Oler JA, et al. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct. Funct. 2016;222:21–39. doi: 10.1007/s00429-016-1198-9.
    1. Olucha-Bordonau, F. E., Fortes-Marco, L., Otero-García, M., Lanuza, E., Martínez-García, F. The Rat Nervous System 4th edn (ed Paxinos, G.) p. 50 (Amsterdam, Elsevier, 2015).
    1. Alvarez RP, Chen G, Bodurka J, Kaplan R, Grillon C. Phasic and sustained fear in humans elicits distinct patterns of brain activity. Neuroimage. 2011;55:389–400. doi: 10.1016/j.neuroimage.2010.11.057.
    1. Somerville LH, Whalen PJ, Kelley WM. Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol. Psychiatry. 2010;68:416–424. doi: 10.1016/j.biopsych.2010.04.002.
    1. Mobbs D, et al. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc. Natl. Acad. Sci. USA. 2010;107:20582–20586. doi: 10.1073/pnas.1009076107.
    1. Avery SN, et al. BNST neurocircuitry in humans. NeuroImage. 2013;91:311–323. doi: 10.1016/j.neuroimage.2014.01.017.
    1. McMenamin BW, Langeslag SJE, Sirbu M, Padmala S, Pessoa L. Network organization unfolds over time during periods of anxious anticipation. J. Neurosci. 2014;34:11261–11273. doi: 10.1523/JNEUROSCI.1579-14.2014.
    1. Torrisi SJ, et al. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum. Brain Mapp. 2015;36:4076–4088. doi: 10.1002/hbm.22899.
    1. Gorka A. X., Torrisi S. J., Shackman A. J., Grillon C., Ernst M. Intrinsic functional connectivity of the central nucleus of the amygdala and bed nucleus of the stria terminalis. NeuroImagepii: S1053-8119, 30215-X (2017).
    1. Fullana MA, et al. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Mol. Psychiatry. 2016;21:500–508. doi: 10.1038/mp.2015.88.
    1. Tomasi D, Wang R, Wang GJ, Volkow ND. Functional connectivity and brain activation: a synergistic approach. Cereb. Cortex. 2014;24:2619–2629. doi: 10.1093/cercor/bht119.
    1. Vytal KE, Overstreet C, Charney D, Robinson OJ, Grillon C. Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults. J. Psychiatry Neurosci. 2014;39:321–329. doi: 10.1503/jpn.130145.
    1. First M. B., Spitzer R. L., Gibbon M., Williams J. Structured Clinical Interview for DSM-IV-TR Axis I Disorders—Non-Patient Edition (New York: Biometrics Research, New York State Psychiatric Institute, SCID-I/NP, 1/2007 Revision; 2007).
    1. Schmitz A, Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test) Nat. Protoc. 2012;7:527–532. doi: 10.1038/nprot.2012.001.
    1. Tyszka JM, Pauli WM. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template. Hum. Brain Mapp. 2016;37:3979–3998. doi: 10.1002/hbm.23289.
    1. Mai J. K., Majtanik M., Paxinos G. Atlas of the Human Brain p.1 (Academic Press, 2015).
    1. Fonov V, et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011;54:313–327. doi: 10.1016/j.neuroimage.2010.07.033.
    1. Fischl B, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;3:341–355. doi: 10.1016/S0896-6273(02)00569-X.
    1. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996;29:162–173. doi: 10.1006/cbmr.1996.0014.
    1. Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW. Mapping sources of correlation in resting state FMRI, with artifact detection and removal. Neuroimage. 2010;52:571–582. doi: 10.1016/j.neuroimage.2010.04.246.
    1. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009;44:893–905. doi: 10.1016/j.neuroimage.2008.09.036.
    1. Saad ZS, et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2012;2:25–32. doi: 10.1089/brain.2012.0080.
    1. Cox R. W., Glen D. R. Nonlinear Warping in AFNI. Poster presented at the 19th Annual Meeting of the Organization for Human Brain Mapping, Seattle, WA, USA (2013).
    1. Friston KJ, et al. Event-related fMRI: characterizing differential responses. Neuroimage. 1998;7:30–40. doi: 10.1006/nimg.1997.0306.
    1. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 2000;44:162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>;2-E.
    1. Birn RM, Smith MA, Jones TB, Bandettini PA. The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage. 2008;40:644–654. doi: 10.1016/j.neuroimage.2007.11.059.
    1. Shirer WR, Jiang H, Price CM, Ng B, Greicius MD. Optimization of rs-fMRI pre-processing for enhanced signal-noise separation, test-retest reliability, and group discrimination. Neuroimage. 2015;117:67–79. doi: 10.1016/j.neuroimage.2015.05.015.
    1. Davey CE, Grayden DB, Egan GF, Johnston LA. Filtering induces correlation in fMRI resting state data. Neuroimage. 2013;64:728–740. doi: 10.1016/j.neuroimage.2012.08.022.
    1. Torrisi SJ, et al. The neural basis of improved cognitive performance by threat of shock. Soc. Cogn. Affect. Neurosci. 2016;11:1677–1686. doi: 10.1093/scan/nsw088.
    1. Iranpour J, Morrot G, Claise B, Jean B, Bonny JM. Using high spatial resolution to improve BOLD fMRI detection at 3T. PLoS. ONE. 2015;10:e0141358–15. doi: 10.1371/journal.pone.0141358.
    1. Olman CA, Davachi L, Inati SJ, García AV. Distortion and signal loss in medial temporal lobe. PLoS. ONE. 2009;4:e8160–10. doi: 10.1371/journal.pone.0008160.
    1. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53:1–15. doi: 10.1016/j.neuroimage.2010.06.010.
    1. Taylor PA, Saad ZS. FATCAT: (an efficient) functional and tractographic connectivity analysis toolbox. Brain Connect. 2013;3:523–535. doi: 10.1089/brain.2013.0154.
    1. Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. NeuroImage. 2011;56:2068–2079. doi: 10.1016/j.neuroimage.2011.03.069.
    1. Mechias ML, Etkin A, Kalisch R. A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage. 2010;49:1760–1768. doi: 10.1016/j.neuroimage.2009.09.040.
    1. Stern EA, Kincaid AE, Wilson CJ. Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J. Neurophysiol. 1997;77:1697–1715. doi: 10.1152/jn.1997.77.4.1697.
    1. Preti M. G., Bolton T. A., Van De Ville D. The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage160, 41–54 (2017).
    1. Lu H, et al. Rat brains also have a default mode network. Proc. Natl. Acad. Sci. USA. 2012;109:3979–3984. doi: 10.1073/pnas.1200506109.
    1. Vincent JL, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–86. doi: 10.1038/nature05758.
    1. van den Heuvel MI, Thomason ME. Functional connectivity of the human brain in utero. Trends Cogn. Sci. 2016;20:931–939. doi: 10.1016/j.tics.2016.10.001.
    1. Deco Gustavo, Jirsa Viktor K., McIntosh Anthony R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience. 2011;12(1):43–56. doi: 10.1038/nrn2961.
    1. Margulies DS, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA. 2016;113:12574–12579. doi: 10.1073/pnas.1608282113.
    1. Amft M, et al. Definition and characterization of an extended social-affective default network. Brain Struct. Funct. 2014;220:1031–1049. doi: 10.1007/s00429-013-0698-0.
    1. Hutzler F. Reverse inference is not a fallacy per se: cognitive processes can be inferred from functional imaging data. Neuroimage. 2014;84:1061–1069. doi: 10.1016/j.neuroimage.2012.12.075.
    1. Cornwell Brian R., Baas Johanna M.P., Johnson Linda, Holroyd Tom, Carver Frederick W., Lissek Shmuel, Grillon Christian. Neural responses to auditory stimulus deviance under threat of electric shock revealed by spatially-filtered magnetoencephalography. NeuroImage. 2007;37(1):282–289. doi: 10.1016/j.neuroimage.2007.04.055.
    1. Baas JM, Milstein J, Donlevy M, Grillon C. Brainstem correlates of defensive states in humans. Biol. Psychiatry. 2006;59:588–593. doi: 10.1016/j.biopsych.2005.09.009.
    1. Clithero JA, Reeck C, Carter RM, Smith DV, Huettel SA. Nucleus accumbens mediates relative motivation for rewards in the absence of choice. Front. Hum. Neurosci. 2011;5:87. doi: 10.3389/fnhum.2011.00087.
    1. Kruger O, Shiozawa T, Kreifelts B, Scheffler K, Ethofer T. Three distinct fiber pathways of the bed nucleus of the stria terminalis to the amygdala and prefrontal cortex. Cortex. 2015;66:60–68. doi: 10.1016/j.cortex.2015.02.007.
    1. Guyer AE, et al. Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. Am. J. Psychiatry. 2012;169:205–212. doi: 10.1176/appi.ajp.2011.11010006.
    1. Lago Tiffany, Davis Andrew, Grillon Christian, Ernst Monique. Striatum on the anxiety map: Small detours into adolescence. Brain Research. 2017;1654:177–184. doi: 10.1016/j.brainres.2016.06.006.
    1. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2009;35:217–238. doi: 10.1038/npp.2009.110.
    1. Etkin Amit, Büchel Christian, Gross James J. The neural bases of emotion regulation. Nature Reviews Neuroscience. 2015;16(11):693–700. doi: 10.1038/nrn4044.
    1. Urry HL, et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J. Neurosci. 2006;26:4415–4425. doi: 10.1523/JNEUROSCI.3215-05.2006.
    1. Fox AS, et al. Orbitofrontal cortex lesions alter anxiety-related activity in the primate bed nucleus of stria terminalis. J. Neurosci. 2010;30:7023–7027. doi: 10.1523/JNEUROSCI.5952-09.2010.
    1. Motzkin JC, et al. Ventromedial prefrontal cortex damage alters resting blood flow to the bed nucleus of stria terminalis. Cortex. 2015;64:281–288. doi: 10.1016/j.cortex.2014.11.013.
    1. Davis M, Shi C. The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann. N. Y. Acad. Sci. 1999;877:281–291. doi: 10.1111/j.1749-6632.1999.tb09273.x.
    1. Walker DL, Toufexis DJ, Davis M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. 2003;463:199–216. doi: 10.1016/S0014-2999(03)01282-2.
    1. Fama R, Sullivan EV. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci. Biobehav. Rev. 2015;54:29–37. doi: 10.1016/j.neubiorev.2015.03.008.
    1. Hermans EJ, MJAG Henckens, Joëls M, Fernández G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014;37:304–314. doi: 10.1016/j.tins.2014.03.006.
    1. Satpute AB, Mumford JA, Naliboff BD, Poldrack RA. Human anterior and posterior hippocampus respond distinctly to state and trait anxiety. Emotion. 2012;12:58–68. doi: 10.1037/a0026517.
    1. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry. 2007;164:1476–1488. doi: 10.1176/appi.ajp.2007.07030504.
    1. Maren Stephen, Phan K. Luan, Liberzon Israel. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience. 2013;14(6):417–428. doi: 10.1038/nrn3492.
    1. Otto T, Poon P. Dorsal hippocampal contributions to unimodal contextual conditioning. J. Neurosci. 2006;26:6603–6609. doi: 10.1523/JNEUROSCI.1056-06.2006.
    1. Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J. Neurosci. 2008;28:6211–6219. doi: 10.1523/JNEUROSCI.1246-08.2008.
    1. Grillon Christian, Robinson Oliver J., Krimsky Marissa, O'Connell Katherine, Alvarez Gabriella, Ernst Monique. Anxiety-mediated facilitation of behavioral inhibition: Threat processing and defensive reactivity during a go/no-go task. Emotion. 2017;17(2):259–266. doi: 10.1037/emo0000214.
    1. Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Buchel C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J. Neurosci. 2008;28:9030–9036. doi: 10.1523/JNEUROSCI.1651-08.2008.
    1. Chen L, et al. Evaluation of highly accelerated simultaneous multi-slice EPI for fMRI. Neuroimage. 2015;104:452–459. doi: 10.1016/j.neuroimage.2014.10.027.
    1. Eklund Anders, Nichols Thomas E., Knutsson Hans. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences. 2016;113(28):7900–7905. doi: 10.1073/pnas.1602413113.
    1. Lieberman MD, Cunningham WA. Type I and type II error concerns in fMRI research: re-balancing the scale. Soc. Cogn. Affect. Neurosci. 2009;4:423–428. doi: 10.1093/scan/nsp052.

Source: PubMed

3
구독하다