Downregulation of T-Cell Transcription Factors in Adult Latent Autoimmune Diabetes with High-Titer Glutamic Acid Decaroxylase Antibody

Xia Wang, Lin Yang, Ying Cheng, Huiying Liang, Jingping Hu, Peilin Zheng, Gan Huang, Zhiguang Zhou, Xia Wang, Lin Yang, Ying Cheng, Huiying Liang, Jingping Hu, Peilin Zheng, Gan Huang, Zhiguang Zhou

Abstract

Introduction: Latent autoimmune diabetes in adults (LADA) shows a heterogeneous clinical profile that is dependent on the glutamic acid decaroxylase antibody (GADA) titer. We speculated that LADA patients with a high or low GADA titer may have distinct T-lymphocyte subset profiles and distinct expression patterns of transcription factors involved in T-cell immunomodulation.

Methods: Patients with LADA (n = 40) and type 2 diabetes (T2DM; n = 14) were recruited to the study, and peripheral blood mononuclear cells were isolated. The proportions of T-lymphocyte subsets (Th1 [T helper type 1], Th2 [T helper type 2], Treg [regulatory T], and Th17 [T helper type 17] cells) were determined by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate mRNA expression levels of the T-cell subtype-enriched transcription factors T-bet (Th1), GATA3 (Th2), transcription factor forkhead box protein 3 (FOXP3) (Treg), and RORC (Th17).

Results: The frequency of Th1 (as a percentage of total CD4+T cells) was greater in the LADA patients with high-titer GADA than in the LADA patients with low-titer GADA (11.06 ± 1.62 vs. 7.05 ± 0.86, P = 0.030). Compared to the T2DM group, in the low-titer GADA group the frequency of Th1 was significantly reduced (7.05 ± 0.86 vs. 16.75 ± 3.73, P = 0.017) and the frequency of Th17 frequency was signficantly increased (1.11 ± 0.09 vs. 0.74 ± 0.16, P = 0.017). Compared to T2DM patients, in the high-titer GADA group there was a significantly reduced expression of FOXP3 (0.35 ± 0.13 vs. 1.75 ± 0.54, P = 0.002), RORC (0.53 ± 0.19 vs. 2.00 ± 0.77, P = 0.046), and GATA3 (0.74 ± 0.17 vs. 2.31 ± 0.91, P = 0.046). Similarly, the high-titer GADA group expressed reduced levels of FOXP3 and RORC compared to the low-titer GADA group (0.35 ± 0.13 vs. 1.50 ± 0.41, P = 0.027; 0.53 ± 0.19 vs. 1.35 ± 0.21, P = 0.027, respectively). There was a negative correlation between FOXP3 expression level and GADA titer for the entire cohort (r = - 0.0433, P = 0.015) and a stronger negative correlation in LADA patients (r = - 0.606, P = 0.008).

Conclusion: LADA patients with high-titer GADA express lower levels of T-cell transcription factors, including the Treg transcription factor FOXP3, which may contribute to differences in the clinical profile compared to LADA patients with low-titer GADA.

Trial registration: ClinicalTrials.gov identifier, NCT01159847.

Keywords: Glutamic acid decarboxylase antibody; Latent autoimmune diabetes in adults; T lymphocyte subsets; Transcription factors.

Figures

Fig. 1
Fig. 1
a Representative plots and gating information of T helper type 1, 2 and 17 (Th1, Th2, and Th17, respectively) cells from the T-cell fluorescence-activated cell sorting (FACS) analysis. Lymphocytes were first gated from peripheral blood mononuclear cells. The samples were analyzed using a BD FACS Canto II system and FlowJo cell analysis software (see text). FSC Forward scatter, FMO fluorescence Minus One control, INF interferon, IL interleukin, SSC side scatter. b Representative plots and gating information on regulatory T (Treg) cells from the T-cell FACS analysis
Fig. 2
Fig. 2
Frequencies of T-cell subsets (Th1, Th2, Th17, Treg) in the type 2 diabetes mellitus (T2DM) and latent autoimmune diabetes in adults (LADA) groups of patients. Th1, Th2, Th17 T-helper cell types 1, 2, 17, respectively
Fig. 3
Fig. 3
Frequencies of T-cell subsets among LADA patients with high-titer glutamic acid decarboxylase autoantibody (GADA), LADA patients with low-titer GADA, and T2DM groups. *P < 0.05 compared to T2DM, ∆P < 0.05 compared to LADA patients with low-titer GADA
Fig. 4
Fig. 4
Relative mRNA expression levels of the T cell-specific transcription factors T-bet, GATA3, FOXP3, and RORC in LADA patients (n = 40), and T2DM patients (n = 14) as measured by real-time PCR. Levels of target gene mRNA transcripts are normalized to β-actin
Fig. 5
Fig. 5
Relative mRNA expression levels of the T cell-specific transcription factors T-bet, GATA3, FOXP3, and RORC in LADA patients with high-titer GADA (n = 19), LADA patients with low-titer GADA (n = 21), and T2DM patients (n = 14) as measured by real-time PCR. Levels of target gene mRNA transcripts are normalized to β-actin. *P < 0.05 compared to T2DM, ∆P < 0.05 compared to low-titer GADA patients with LADA

References

    1. Zhou Z, Xiang Y, Ji L, et al. Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes. 2013;62(2):543–550. doi: 10.2337/db12-0207.
    1. Naik RG, Brooks-Worrell BM, Palmer JP. Latent autoimmune diabetes in adults. J Clin Endocrinol Metab. 2009;94(12):4635–4644. doi: 10.1210/jc.2009-1120.
    1. Leslie RD, Kolb H, Schloot NC, et al. Diabetes classification: grey zones, sound and smoke: action LADA 1. Diabetes Metab Res Rev. 2008;24(7):511–519. doi: 10.1002/dmrr.877.
    1. Nambam B, Aggarwal S, Jain A. Latent autoimmune diabetes in adults: a distinct but heterogeneous clinical entity. World J Diabetes. 2010;1(4):111–115. doi: 10.4239/wjd.v1.i4.111.
    1. Cervin C, Lyssenko V, Bakhtadze E, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes. 2008;57(5):1433–1437. doi: 10.2337/db07-0299.
    1. Zheng P, Kissler S. PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant. Diabetes. 2013;62(3):896–904. doi: 10.2337/db12-0929.
    1. Pozzilli P, Guglielmi C, Pronina E, et al. Double or hybrid diabetes associated with an increase in type 1 and type 2 diabetes in children and youths. Pediatr Diabetes. 2007;8(Suppl 9):88–95. doi: 10.1111/j.1399-5448.2007.00338.x.
    1. Cernea S, Buzzetti R, Pozzilli P. Beta-cell protection and therapy for latent autoimmune diabetes in adults. Diabetes Care. 2009;32(Suppl 2):S246–S252. doi: 10.2337/dc09-S317.
    1. Fourlanos S, Dotta F, Greenbaum CJ, et al. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia. 2005;48(11):2206–2212. doi: 10.1007/s00125-005-1960-7.
    1. Yi B, Huang G, Zhou Z. Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus. J Diabetes Investig. 2016;7(4):459–465. doi: 10.1111/jdi.12441.
    1. Huang G, Xiang Y, Pan L, et al. Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes Metab Res Rev. 2013;29(5):363–368. doi: 10.1002/dmrr.2396.
    1. Arvan P, Pietropaolo M, Ostrov D, et al. Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med. 2012;2(8):a007658. doi: 10.1101/cshperspect.a007658.
    1. Gohlke H, Ferrari U, Koczwara K, et al. SLC30A8 (ZnT8) polymorphism is associated with young age at type 1 diabetes onset. Rev Diabet Stud. 2008;5(1):25–27. doi: 10.1900/RDS.2008.5.25.
    1. Walther D, Eugster A, Jergens S, et al. Tetraspanin 7 autoantibodies in type 1 diabetes. Diabetologia. 2016;59(9):1973–1976. doi: 10.1007/s00125-016-3997-1.
    1. McLaughlin KA, Richardson CC, Ravishankar A, et al. Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes. Diabetes. 2016;65(6):1690–1698. doi: 10.2337/db15-1058.
    1. Xiang Y, Huang G, Shan Z, et al. Glutamic acid decarboxylase autoantibodies are dominant but insufficient to identify most Chinese with adult-onset non-insulin requiring autoimmune diabetes: LADA China study 5. Acta Diabetol. 2015;52(6):1121–1127. doi: 10.1007/s00592-015-0799-8.
    1. Buzzetti R, Di Pietro S, Giaccari A, et al. High titer of autoantibodies to GAD identifies a specific phenotype of adult-onset autoimmune diabetes. Diabetes Care. 2007;30(4):932–938. doi: 10.2337/dc06-1696.
    1. Zampetti S, Campagna G, Tiberti C, et al. High GADA titer increases the risk of insulin requirement in LADA patients: a 7-year follow-up (NIRAD study 7) Eur J Endocrinol. 2014;171(6):697–704. doi: 10.1530/EJE-14-0342.
    1. Kaaba SA, Al-Harbi SA. Abnormal lymphocyte subsets in Kuwaiti patients with type-1 insulin-dependent diabetes mellitus and their first-degree relatives. Immunol Lett. 1995;47(3):209–213. doi: 10.1016/0165-2478(95)00088-5.
    1. Deng C, Xiang Y, Tan T, et al. Altered peripheral B-lymphocyte subsets in type 1 diabetes and latent autoimmune diabetes in adults. Diabetes Care. 2016;39(3):434–440. doi: 10.2337/dc15-1765.
    1. Akesson C, Uvebrant K, Oderup C, et al. Altered natural killer (NK) cell frequency and phenotype in latent autoimmune diabetes in adults (LADA) prior to insulin deficiency. Clin Exp Immunol. 2010;161(1):48–56.
    1. Nieminen JK, Vakkila J, Salo HM, et al. Altered phenotype of peripheral blood dendritic cells in pediatric type 1 diabetes. Diabetes Care. 2012;35(11):2303–2310. doi: 10.2337/dc11-2460.
    1. Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007;19(6):652–657. doi: 10.1016/j.coi.2007.07.020.
    1. Hamari S, Kirveskoski T, Glumoff V, et al. Analyses of regulatory CD4 + CD25 + FOXP3 + T cells and observations from peripheral T cell subpopulation markers during the development of type 1 diabetes in children. Scand J Immunol. 2016;83(4):279–287. doi: 10.1111/sji.12418.
    1. Yang Z, Zhou Z, Huang G, et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract. 2007;76(1):126–131. doi: 10.1016/j.diabres.2006.08.013.
    1. Radenkovic M, Silver C, Arvastsson J, et al. Altered regulatory T cell phenotype in latent autoimmune diabetes of the adults (LADA) Clin Exp Immunol. 2016;186(1):46–56. doi: 10.1111/cei.12834.
    1. Li Y, Zhao M, Hou C, et al. Abnormal DNA methylation in CD4 + T cells from people with latent autoimmune diabetes in adults. Diabetes Res Clin Pract. 2011;94(2):242–248. doi: 10.1016/j.diabres.2011.07.027.
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
    1. Liu L, Li X, Xiang Y, et al. Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China Study 3) Diabetes Care. 2015;38(1):16–21. doi: 10.2337/dc14-1770.
    1. van Deutekom AW, Heine RJ, Simsek S. The islet autoantibody titres: their clinical relevance in latent autoimmune diabetes in adults (LADA) and the classification of diabetes mellitus. Diabet Med. 2008;25(2):117–125. doi: 10.1111/j.1464-5491.2007.02316.x.
    1. Borg H, Gottsater A, Landin-Olsson M, et al. High levels of antigen-specific islet antibodies predict future beta-cell failure in patients with onset of diabetes in adult age. J Clin Endocrinol Metab. 2001;86(7):3032–3038.
    1. Li CR, Mueller EE, Bradley LM. Islet antigen-specific Th17 cells can induce TNF-alpha-dependent autoimmune diabetes. J Immunol. 2014;192(4):1425–1432. doi: 10.4049/jimmunol.1301742.
    1. Tsiavou A, Degiannis D, Hatziagelaki E, et al. Intracellular IFN-gamma production and IL-12 serum levels in latent autoimmune diabetes of adults (LADA) and in type 2 diabetes. J Interferon Cytokine Res. 2004;24(7):381–387. doi: 10.1089/1079990041535665.
    1. Ryden A, Ludvigsson J, Fredrikson M, et al. General immune dampening is associated with disturbed metabolism at diagnosis of type 1 diabetes. Pediatr Res. 2014;75(1–1):45–50. doi: 10.1038/pr.2013.167.
    1. Foss NT, Foss-Freitas MC, Ferreira MA, et al. Impaired cytokine production by peripheral blood mononuclear cells in type 1 diabetic patients. Diabetes Metab. 2007;33(6):439–443. doi: 10.1016/j.diabet.2007.10.001.
    1. Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3 + regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500. doi: 10.1038/nri2785.

Source: PubMed

3
구독하다