Iron Homeostasis Disruption and Oxidative Stress in Preterm Newborns

Genny Raffaeli, Francesca Manzoni, Valeria Cortesi, Giacomo Cavallaro, Fabio Mosca, Stefano Ghirardello, Genny Raffaeli, Francesca Manzoni, Valeria Cortesi, Giacomo Cavallaro, Fabio Mosca, Stefano Ghirardello

Abstract

Iron is an essential micronutrient for early development, being involved in several cellular processes and playing a significant role in neurodevelopment. Prematurity may impact on iron homeostasis in different ways. On the one hand, more than half of preterm infants develop iron deficiency (ID)/ID anemia (IDA), due to the shorter duration of pregnancy, early postnatal growth, insufficient erythropoiesis, and phlebotomy losses. On the other hand, the sickest patients are exposed to erythrocytes transfusions, increasing the risk of iron overload under conditions of impaired antioxidant capacity. Prevention of iron shortage through placental transfusion, blood-sparing practices for laboratory assessments, and iron supplementation is the first frontier in the management of anemia in preterm infants. The American Academy of Pediatrics recommends the administration of 2 mg/kg/day of oral elemental iron to human milk-fed preterm infants from one month of age to prevent ID. To date, there is no consensus on the type of iron preparations, dosages, or starting time of administration to meet optimal cost-efficacy and safety measures. We will identify the main determinants of iron homeostasis in premature infants, elaborate on iron-mediated redox unbalance, and highlight areas for further research to tailor the management of iron metabolism.

Keywords: anemia; blood-sparing; iron; prematurity; redox unbalance; transfusion.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Presumptive molecular pathways of ferroptosis following brain injury in the developing brain. Excess free iron in the brain may be the result of Hb degradation by HO-1 after intracerebral hemorrhage. Similarly, a hypoxic-ischemic insult enhances iron liberation from its binding proteins. Fe2+, the reactive form of iron, promotes ROS production via the Fenton reaction leading to lipid peroxidation and membrane damage while the damaged brain releases glutamate. High extracellular glutamate concentrations inhibit the cystine/glutamate antiporter system xc- thus reducing cellular cystine levels, necessary for GSH synthesis. Reduced intracellular cystine concentration indirectly inactivates GPX4, the enzyme responsible for lipid hydroperoxide reduction and GSH consumption. The accumulation of lipid hydroperoxides in an enriched Fe2+ environment leads to significant lipid ROS formation that induces membrane permeabilization and ferroptosis [6,47]. Fe2+: ferrous cation; GPX4: glutathione peroxidase 4; GSSG: oxidized GSH; GSH: reduced glutathione; Hb: hemoglobin; HO-1: heme oxygenase 1; LOOH: lipid hydroperoxides; LOH: lipid alcohols; ROS: reactive oxygen species; TF: transferrin; TfR1: transferrin receptor 1. Adapted from Wang et al. [6].
Figure 2
Figure 2
Iron homeostasis in preterm newborns: risk factors, prevention strategies and treatment.

References

    1. Moreno-Fernández J., Ochoa J.J., Latunde-Dada G.O., Diaz-Castro J. Iron deficiency and iron homeostasis in low birth weight preterm infants: A systematic review. Nutrients. 2019;11:1090. doi: 10.3390/nu11051090.
    1. Cao C., O’Brien K.O. Pregnancy and iron homeostasis: An update. Nutr. Rev. 2013;71:35–51. doi: 10.1111/j.1753-4887.2012.00550.x.
    1. Lozoff B., Beard J., Connor J., Felt B., Georgieff M., Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006;64:S34–S91. doi: 10.1301/nr.2006.may.S34-S43.
    1. Georgieff M.K. Neonatal Nutrition and Metabolism. Cambridge University Press (CUP); Cambridge, UK: 2009. Iron; pp. 291–298.
    1. United Nations Administrative Committee on Coordination/Sub-Committee on Nutririon. International Food Policy Research Institute . Fourth Report of the World Nutrition Situation. United Nations Administrative Committee on Coordination/Sub-Committee on Nutrition; Geneva, Switzerland: 2000.
    1. Wang Y., Wu Y., Li T., Wang X., Zhu C. Iron metabolism and brain development in premature infants. Front. Physiol. 2019;10:463. doi: 10.3389/fphys.2019.00463.
    1. Gkouvatsos K., Papanikolaou G., Pantopoulos K. Regulation of iron transport and the role of transferrin. Biochim. Biophys. Acta. 2012;1820:188–202. doi: 10.1016/j.bbagen.2011.10.013.
    1. Bastian T.W., Von Hohenberg W.C., Mickelson D.J., Lanier L.M., Georgieff M.K. Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism and dendrite complexity. Dev. Neurosci. 2016;38:264–276. doi: 10.1159/000448514.
    1. Lozoff B., Georgieff M.K. Iron deficiency and brain development. Semin. Pediatr. Neurol. 2006;13:158–165. doi: 10.1016/j.spen.2006.08.004.
    1. Scholl T.O. Maternal iron status: Relation to fetal growth, length of gestation and the neonate’s iron endowment. Nutr. Rev. 2011;69:S23–S29. doi: 10.1111/j.1753-4887.2011.00429.x.
    1. Allen L.H. Anemia and iron deficiency: Effects on pregnancy outcome. Am. J. Clin. Nutr. 2000;71:1280S–1284S. doi: 10.1093/ajcn/71.5.1280s.
    1. Chaparro C.M. Timing of umbilical cord clamping: Effect on iron endowment of the newborn and later iron status. Nutr. Rev. 2011;69:S30–S36. doi: 10.1111/j.1753-4887.2011.00430.x.
    1. Mukhopadhyay K., Yadav R.K., Kishore S.S., Garewal G., Jain V., Narang A. Iron status at birth and at 4 weeks in term small-for-gestation infants in comparison with appropriate-for-gestation infants. J. Matern. Neonatal Med. 2010;24:886–890. doi: 10.3109/14767058.2010.536866.
    1. Baker R.D., Greer F.R. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age) Pediatrics. 2010;126:1040–1050. doi: 10.1542/peds.2010-2576.
    1. Collard K.J., Anderson B., Storfer-Isser A., Taylor H.G., Rosen C.L., Redline S. Iron homeostasis in the neonate. Pediatrics. 2009;123:1208–1216. doi: 10.1542/peds.2008-1047.
    1. Rao R.B., Georgieff M.K. Iron therapy for preterm infants. Clin. Perinatol. 2009;36:27–42. doi: 10.1016/j.clp.2008.09.013.
    1. Aggett P.J. Trace elements of the micropremie. Clin. Perinatol. 2000;27:119–129. doi: 10.1016/S0095-5108(05)70009-9.
    1. Georgieff M.K. Long-term brain and behavioral consequences of early iron deficiency. Nutr. Rev. 2011;69:S43–S48. doi: 10.1111/j.1753-4887.2011.00432.x.
    1. Buonocore G., Perrone S., Longini M., Vezzosi P. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr. Res. 2002;52:46–49. doi: 10.1203/00006450-200207000-00010.
    1. Buonocore G., Perrone S., Longini M., Paffetti P., Vezzosi P., Gatti M.G., Bracci R. Non protein bound iron as early predictive marker of neonatal brain damage. Brain. 2003;126:1224–1230. doi: 10.1093/brain/awg116.
    1. Dusi E., Cortinovis I., Villa S., Fumagalli M., Agosti M., Milani S., Mosca F., Ghirardello S. Effects of red blood cell transfusions on the risk of developing complications or death: An observational study of a cohort of very low birth weight infants. Am. J. Perinatol. 2016;34:88–95. doi: 10.1055/s-0036-1584300.
    1. Chen J., Smith L.E. Retinopathy of prematurity. Angiogenesis. 2007;10:133–140. doi: 10.1007/s10456-007-9066-0.
    1. Shouman B.O., Mesbah A., Aly H. Iron metabolism and lipid peroxidation products in infants with hypoxic ischemic encephalopathy. J. Perinatol. 2008;28:487–491. doi: 10.1038/jp.2008.22.
    1. Saugstad O.D. The oxygen radical disease in neonatology. Indian J. Pediatr. 1989;56:585–593. doi: 10.1007/BF02722373.
    1. Panfoli I., Candiano G., Malova M., De Angelis L., Cardiello V., Buonocore G., Ramenghi L.A. Oxidative stress as a primary risk factor for brain damage in preterm newborns. Front. Pediatr. 2018;6 doi: 10.3389/fped.2018.00369.
    1. Lönnerdal B., Georgieff M.K., Hernell O. Developmental physiology of iron absorption, homeostasis, and metabolism in the healthy term infant. J. Pediatr. 2015;167:S8–S14. doi: 10.1016/j.jpeds.2015.07.014.
    1. Beard J.L., Connor J.R. Iron status and neural functioning. Annu. Rev. Nutr. 2003;23:41–58. doi: 10.1146/annurev.nutr.23.020102.075739.
    1. Siddappa A.M., Rao R.B., Long J.D., Widness J.A., Georgieff M.K. The assessment of newborn iron stores at birth: A review of the literature and standards for ferritin concentrations. Neonatology. 2007;92:73–82. doi: 10.1159/000100805.
    1. Walker S., Wachs T.D., Gardner J.M., Lozoff B., Wasserman G.A., Pollitt E., Carter J.A. Child development: Risk factors for adverse outcomes in developing countries. Lancet. 2007;369:145–157. doi: 10.1016/S0140-6736(07)60076-2.
    1. Grantham-McGregor S.M., Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J. Nutr. 2001;131:649S–668S. doi: 10.1093/jn/131.2.649S.
    1. Amin S.B., Orlando M., Eddins A., Macdonald M., Monczynski C., Wang H. In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. J. Pediatr. 2009;156:377–381. doi: 10.1016/j.jpeds.2009.09.049.
    1. Tamura T., Goldenberg R.L., Hou J., Johnston K.E., Cliver S.P., Ramey S.L., Nelson K.G. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002;140:165–170. doi: 10.1067/mpd.2002.120688.
    1. Armony-Sivan R., Eidelman A.I., Lanir A., Sredni D., Yehuda S. Iron status and neurobehavioral development of premature infants. J. Perinatol. 2004;24:757–762. doi: 10.1038/sj.jp.7211178.
    1. Felt B.T., Lozoff B. Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. J. Nutr. 1996;126:693–701. doi: 10.1093/jn/126.3.693.
    1. Pasricha S.-R., Hayes E., Kalumba K., Biggs B.-A. Effect of daily iron supplementation on health in children aged 4–23 months: A systematic review and meta-analysis of randomised controlled trials. Lancet Glob. Health. 2013;1:e77–e86. doi: 10.1016/S2214-109X(13)70046-9.
    1. Wang B., Zhan S., Gong T., Lee L. Iron therapy for improving psychomotor development and cognitive function in children under the age of three with iron deficiency anaemia. Cochrane Database Syst. Rev. 2013;2013:CD001444. doi: 10.1002/14651858.CD001444.pub2.
    1. Christian P., Mullany L.C., Hurley K.M., Katz J., Black R.E. Nutrition and maternal, neonatal, and child health. Semin. Perinatol. 2015;39:361–372. doi: 10.1053/j.semperi.2015.06.009.
    1. Friel J.K., Aziz K., Andrews W.L., Harding S., Courage M.L., Adams R.J. A double-masked, randomized control trial of iron supplementation in early infancy in healthy term breast-fed infants. J. Pediatr. 2003;143:582–586. doi: 10.1067/S0022-3476(03)00301-9.
    1. Lozoff B., De Andraca I., Castillo M., Smith J.B., Walter T., Pino P. Behavioral and developmental effects of preventing irondeficiency anemia in healthy full-term infants. Pediatrics. 2003;112:846–854.
    1. Szajewska H., Ruszczyński M., Chmielewska A. Effects of iron supplementation in nonanemic pregnant women, infants, and young children on the mental performance and psychomotor development of children: A systematic review of randomized controlled trials. Am. J. Clin. Nutr. 2010;91:1684–1690. doi: 10.3945/ajcn.2010.29191.
    1. Steinmacher J., Pohlandt F., Bode H., Sander S., Kron M., Franz A.R. Randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams: Neurocognitive development at 5.3 years’ corrected age. Pediatrics. 2007;120:538–546. doi: 10.1542/peds.2007-0495.
    1. Perrone S., Tataranno L.M., Stazzoni G., Ramenghi L.A., Buonocore G. Brain susceptibility to oxidative stress in the perinatal period. J. Matern. Neonatal Med. 2013;28:2291–2295. doi: 10.3109/14767058.2013.796170.
    1. Wu Y., Song J., Wang Y., Wang X., Culmsee C., Zhu C. The potential role of ferroptosis in neonatal brain injury. Front. Mol. Neurosci. 2019;13:115. doi: 10.3389/fnins.2019.00115.
    1. Buonocore G., Zani S., Sargentini I., Gioia D., Signorini C., Bracci R. Hypoxia-induced free iron release in the red cells of newborn infants. Acta Paediatr. 1998;87:77–81. doi: 10.1080/08035259850157912.
    1. Rathnasamy G., Ling E.-A., Kaur C. Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J. Neurosci. 2011;31:17982–17995. doi: 10.1523/JNEUROSCI.2250-11.2011.
    1. Dorrepaal C.A., Berger H.M., Benders M.J., Van Zoeren-Grobben D., Van De Bor M., Van Bel F. Nonprotein-bound iron in postasphyxial reperfusion injury of the newborn. Pediatrics. 1996;98:883–889.
    1. Magtanong L., Dixon S.J. Ferroptosis and brain injury. Dev. Neurosci. 2018;40:382–395. doi: 10.1159/000496922.
    1. Ciccoli L., Rossi V., Leoncini S., Signorini C., Blanco-Garcia J. Iron release in newborn and adult erythrocytes exposed to hypoxia-reoxygenation. Biochim. Biophys. Acta. 2004;1672:203–213. doi: 10.1016/j.bbagen.2004.04.003.
    1. Halliwell B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992;59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x.
    1. Song J., Sun H., Xu F., Kang W., Gao L., Guo J., Zhang Y., Xia L., Wang X., Zhu C. Recombinant human erythropoietin improves neurological outcomes in very preterm infants. Ann. Neurol. 2016;80:24–34. doi: 10.1002/ana.24677.
    1. Zhu C., Kang W., Xu F., Cheng X., Zhang Z., Jia L., Ji L., Guo X., Xiong H., Simbruner G., et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics. 2009;124:e218–e226. doi: 10.1542/peds.2008-3553.
    1. Juul S.E., Comstock B.A., Wadhawan R., Mayock D.E., Courtney S.E., Robinson T., Ahmad K.A., Bendel-Stenzel E., Baserga M., LaGamma E.F., et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N. Engl. J. Med. 2020;382:233–243. doi: 10.1056/NEJMoa1907423.
    1. Lorenz L., Arand J., Büchner K., Wacker-Gussmann A., Peter A., Poets C.F., Franz A.R. Reticulocyte haemoglobin content as a marker of iron deficiency. Arch. Dis. Child. Fetal Neonatal Ed. 2014;100:F198–F202. doi: 10.1136/archdischild-2014-306076.
    1. Uçar M.A., Falay M., Dağdas S., Ceran F., Urlu S.M., Özet G. The importance of RET-He in the diagnosis of iron deficiency and iron deficiency anemia and the evaluation of response to oral iron therapy. J. Med. Biochem. 2019;38:496–502. doi: 10.2478/jomb-2018-0052.
    1. Al R. Zinc protoporphyrin/heme ratio for diagnosis of preanemic iron deficiency. Pediatrics. 1999;104:e37.
    1. Christensen R.D., Henry E., Jopling J., Wiedmeier S.E. The CBC: Reference ranges for neonates. Semin. Perinatol. 2009;33:3–11. doi: 10.1053/j.semperi.2008.10.010.
    1. Lorenz L., Peter A., Poets C.F., Franz A.R. A review of cord blood concentrations of iron status parameters to define reference ranges for preterm infants. Neonatology. 2013;104:194–202. doi: 10.1159/000353161.
    1. Sweet D.G., Savage G., Tubman R., Lappin T.R.J., Halliday H.L. Cord blood transferrin receptors to assess fetal iron status. Arch. Dis. Child. Fetal Neonatal Ed. 2001;85:F46–F48. doi: 10.1136/fn.85.1.F46.
    1. Juul S., Zerzan J.C., Strandjord T.P., Woodrum D.E. Zinc protoporphyrin/heme as an indicator of iron status in NICU patients. J. Pediatr. 2003;142:273–278. doi: 10.1067/mpd.2003.101.
    1. Löfving A., Domellöf M., Hellström-Westas L., Andersson O. Reference intervals for reticulocyte hemoglobin content in healthy infants. Pediatr. Res. 2018;84:657–661. doi: 10.1038/s41390-018-0046-4.
    1. Lorenz L., Peter A., Arand J., Springer F., Poets C.F., Franz A.R. Reference ranges of reticulocyte haemoglobin content in preterm and term infants: A retrospective analysis. Neonatology. 2016;111:189–194. doi: 10.1159/000450674.
    1. Beard J., DeRegnier R., Shaw M.D., Rao R., Georgieff M. Diagnosis of iron deficiency in infants. Lab. Med. 2007;38:103–108. doi: 10.1309/7KJ11RX758UKLXXM.
    1. Ullrich C., Wu A., Armsby C., Rieber S., Wingerter S., Brugnara C., Shapiro D., Bernstein H. Screening healthy infants for iron deficiency using reticulocyte hemoglobin content. JAMA. 2005;294:924. doi: 10.1001/jama.294.8.924.
    1. Domellöf M. Meeting the iron needs of low and very low birth weight infants. Ann. Nutr. Metab. 2017;71:16–23. doi: 10.1159/000480741.
    1. Peerschke E., Pessin M., Maslak P. Using the hemoglobin content of reticulocytes (RET-He) to evaluate anemia in patients with cancer. Am. J. Clin. Pathol. 2014;142:506–512. doi: 10.1309/AJCPCVZ5B0BOYJGN.
    1. Miller S.M., McPherson R.J., Juul S.E. Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J. Pediatr. 2006;148:44–48. doi: 10.1016/j.jpeds.2005.08.052.
    1. Colomer J., Colomer C., Gutierrez D., Jubert A., Nolasco A., Donat J., Fernández-Delgado R., Donat F., Álvarez-Dardet C. Anaemia during pregnancy as a risk factor for infant iron deficiency: Report from the Valencia Infant Anaemia Cohort (VIAC) study. Paediatr. Périnat. Epidemiol. 1990;4:196–204. doi: 10.1111/j.1365-3016.1990.tb00638.x.
    1. Cao C., Fleming M.D. The placenta: The forgotten essential organ of iron transport. Nutr. Rev. 2016;74:421–431. doi: 10.1093/nutrit/nuw009.
    1. Lust C., Vesoulis Z.A., Jackups R., Liao S., Rao R., Mathur A.M. Early red cell transfusion is associated with development of severe retinopathy of prematurity. J. Perinatol. 2018;39:393–400. doi: 10.1038/s41372-018-0274-9.
    1. Rashid N., Al-Sufayan F., Seshia M.M.K., Baier R.J. Post transfusion lung injury in the neonatal population. J. Perinatol. 2012;33:292–296. doi: 10.1038/jp.2012.114.
    1. Kelly A.M., Williamson L.M. Neonatal transfusion. Early Hum. Dev. 2013;89:855–860. doi: 10.1016/j.earlhumdev.2013.08.025.
    1. Mukhopadhyay K., Yadav R.K., Kishore S.S., Garewal G., Jain V., Narang A. Iron status at birth and at 4 weeks in preterm-SGA infants in comparison with preterm and term-AGA infants. J. Matern. Neonatal Med. 2012;25:1474–1478. doi: 10.3109/14767058.2011.643328.
    1. Ziegler E.E., Nelson S.E., Jeter J.M. Iron stores of breastfed infants during the first year of life. Nutrients. 2014;6:2023–2034. doi: 10.3390/nu6052023.
    1. Friel J.K., Qasem W., Cai C. Iron and the breastfed infant. Antioxidants. 2018;7:54. doi: 10.3390/antiox7040054.
    1. Ghirardello S., Di Tommaso M., Fiocchi S., Locatelli A., Perrone B., Pratesi S., Saracco P. Italian recommendations for placental transfusion strategies. Front. Pediatr. 2018;6 doi: 10.3389/fped.2018.00372.
    1. Qian Y., Ying X., Wang P., Lu Z., Hua Y. Early versus delayed umbilical cord clamping on maternal and neonatal outcomes. Arch. Gynecol. Obstet. 2019;300:531–543. doi: 10.1007/s00404-019-05215-8.
    1. Mercer J.S., Erickson-Owens D. Delayed cord clamping increases infants’ iron stores. Lancet. 2006;367:1956–1958. doi: 10.1016/S0140-6736(06)68858-2.
    1. Chaparro C.M., Neufeld L.M., Alavez G.T., Cedillo R.E.-L., Dewey K.G. Effect of timing of umbilical cord clamping on iron status in Mexican infants: A randomised controlled trial. Lancet. 2006;367:1997–2004. doi: 10.1016/S0140-6736(06)68889-2.
    1. Armstrong-Buisseret L., Powers K., Dorling J., Bradshaw L., Johnson S., Mitchell E., Duley L. Randomised trial of cord clamping at very preterm birth: Outcomes at 2 years. Arch. Dis. Child. Fetal Neonatal Ed. 2019;105:292–298. doi: 10.1136/archdischild-2019-316912.
    1. Andersson O., Lindquist B., Lindgren M., Stjernqvist K., Domellöf M., Hellström-Westas L. Effect of delayed cord clamping on neurodevelopment at 4 years of age. JAMA Pediatr. 2015;169:631. doi: 10.1001/jamapediatrics.2015.0358.
    1. Kumar B., Upadhyay A., Gothwal S., Jaiswal V., Joshi P., Dubey K. Umbilical cord milking and hematological parameters in moderate to late preterm neonates: A randomized controlled trial. Indian Pediatr. 2015;52:753–757. doi: 10.1007/s13312-015-0711-1.
    1. Katheria A., Reister F., Essers J., Mendler M., Hummler H., Subramaniam A., Carlo W., Tita A., Truong G., Davis-Nelson S., et al. Association of umbilical cord milking vs delayed umbilical cord clamping with death or severe intraventricular hemorrhage among preterm infants. JAMA. 2019;322:1877–1886. doi: 10.1001/jama.2019.16004.
    1. Akkermans M.D., Uijterschout L., Abbink M., Vos P., Rövekamp-Abels L., Boersma B., Van Goudoever J.B., Brus F. Predictive factors of iron depletion in late preterm infants at the postnatal age of 6 weeks. Eur. J. Clin. Nutr. 2016;70:941–946. doi: 10.1038/ejcn.2016.34.
    1. Lemyre B., Sample M., Lacaze-Masmonteil T. Minimizing blood loss and the need for transfusions in very premature infants. Paediatr. Child Health. 2016;20:451–456. doi: 10.1093/pch/20.8.451.
    1. Carroll P., Christensen R.D. New and underutilized uses of umbilical cord blood in neonatal care. Matern. Health Neonatol. Perinatol. 2015;1:16. doi: 10.1186/s40748-015-0017-2.
    1. Carroll P. Umbilical cord blood—An untapped resource. Clin. Perinatol. 2015;42:541–556. doi: 10.1016/j.clp.2015.04.017.
    1. Raffaeli G., Tripodi A., Manzoni F., Scalambrino E., Pesenti N., Amodeo I., Cavallaro G., Villamor E., Peyvandi F., Mosca F., et al. Is placental blood a reliable source for the evaluation of neonatal hemostasis at birth? Transfusion. 2020 doi: 10.1111/trf.15785.
    1. Baer V.L., Lambert D.K., Carroll P., Gerday E., Christensen R.D. Using umbilical cord blood for the initial blood tests of VLBW neonates results in higher hemoglobin and fewer RBC transfusions. J. Perinatol. 2012;33:363–365. doi: 10.1038/jp.2012.127.
    1. Braekke K., Bechensteen A.G., Halvorsen B.L., Blomhoff R., Haaland K., Staff A.C. Oxidative stress markers and antioxidant status after oral iron supplementation to very low birth weight infants. J. Pediatr. 2007;151:23–28. doi: 10.1016/j.jpeds.2007.02.016.
    1. Bader D., Kugelman A., Maor-Rogin N., Weinger-Abend M., Hershkowitz S., Tamir A., Lanir A., Attias D., Barak M. The role of high-dose oral iron supplementation during erythropoietin therapy for anemia of prematurity. J. Perinatol. 2001;21:215–220. doi: 10.1038/sj.jp.7200522.
    1. Brozovic B., Burland W., Simpson K., Lord J. Iron status of preterm low birth weight infants and their response to oral iron. Arch. Dis. Child. 1974;49:386–389. doi: 10.1136/adc.49.5.386.
    1. Lapillonne A., Bronsky J., Campoy C., Embleton N., Fewtrell M., Mis N.F., Gerasimidis K., Hojsak I., Hulst J., Indrio F., et al. Feeding the late and moderately preterm infant. J. Pediatr. Gastroenterol. Nutr. 2019;69:259–270. doi: 10.1097/MPG.0000000000002397.
    1. American academy of pediatrics. Nutrition committee of the canadian paediatric society and the committee on nutrition of the american academy of pediatrics. Breast-feeding. A commentary in celebration of the international year of the child, 1979. Pediatrics. 1978;62:23–54.
    1. Agostoni C., Buonocore G., Carnielli V., De Curtis M., Darmaun D., Decsi T., Domellöf M., Embleton N., Fusch C., Genzel-Boroviczeny O., et al. Enteral nutrient supply for preterm infants: Commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2010;50:85–91. doi: 10.1097/MPG.0b013e3181adaee0.
    1. Franz A.R., Mihatsch W.A., Sander S., Kron M., Pohlandt F. Prospective randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams. Pediatrics. 2000;106:700–706. doi: 10.1542/peds.106.4.700.
    1. Friel J.K., Serfass R.E., Fennessey P.V., Miller L.V., Andrews W.L., Simmons B.S., Downton G.F., Kwa P.G. Elevated intakes of zinc in infant formulas do not interfere with iron absorption in premature infants. J. Pediatr. Gastroenterol. Nutr. 1998;27:312–316. doi: 10.1097/00005176-199809000-00008.
    1. Lönnerdal B., Kelleher S.L. Iron metabolism in infants and children. Food Nutr. Bull. 2007;28:S491–S499. doi: 10.1177/15648265070284S402.
    1. Fusch G., Mitra S., Topp H., Agarwal A., Yiu S.H., Bruhs J., Rochow N., Lange A., Heckmann M., Fusch C. Source and quality of enteral nutrition influences oxidative stress in preterm infants: A prospective cohort study. J. Parenter. Enter. Nutr. 2018;42:1288–1294. doi: 10.1002/jpen.1156.
    1. Meyer M., Haworth C., Meyer J., Commerford A. A comparison of oral and intravenous iron supplementation in preterm infants receiving recombinant erythropoietin. J. Pediatr. 1996;129:258–263. doi: 10.1016/S0022-3476(96)70251-2.
    1. Aher S.M., Ohlsson A. Late erythropoiesis-stimulating agents to prevent red blood cell transfusion in preterm or low birth weight infants. Cochrane Database Syst. Rev. 2019;2:CD004868. doi: 10.1002/14651858.CD004868.pub5.
    1. Jin H.-X., Wang R.-S., Chen S.-J., Wang A.-P., Liu X.-Y. Early and late Iron supplementation for low birth weight infants: A meta-analysis. Ital. J. Pediatr. 2015;41:16. doi: 10.1186/s13052-015-0121-y.
    1. Cooke R.W., Drury J.A., Yoxall C.W., James C. Blood transfusion and chronic lung disease in preterm infants. Eur. J. Pediatr. 1997;156:47–50. doi: 10.1007/s004310050551.
    1. Dani C., Reali M., Bertini G., Martelli E., Pezzati M., Rubaltelli F.F. The role of blood transfusions and iron intake on retinopathy of prematurity. Early Hum. Dev. 2001;62:57–63. doi: 10.1016/S0378-3782(01)00115-3.
    1. Patel R.M., Knezevic A., Yang J., Shenvi N., Hinkes M., Roback J.D., Easley K.A., Josephson C.D. Enteral iron supplementation, red blood cell transfusion, and risk of bronchopulmonary dysplasia in very-low-birth-weight infants. Transfusion. 2019;59:1675–1682. doi: 10.1111/trf.15216.
    1. Blau J., Calo J.M., Dozor D., Sutton M., Alpan G., La Gamma E.F. Transfusion-related acute gut injury: Necrotizing enterocolitis in very low birth weight neonates after packed red blood cell transfusion. J. Pediatr. 2011;158:403–409. doi: 10.1016/j.jpeds.2010.09.015.
    1. Alexander J.T., El-Ali A.M., Newman J.L., Karatela S., Predmore B.L., Lefer D.J., Sutliff R.L., Roback J.D. Red blood cells stored for increasing periods produce progressive impairments in nitric oxide-mediated vasodilation. Transfusion. 2013;53:2619–2628. doi: 10.1111/trf.12111.
    1. Collard K.J. Is there a causal relationship between the receipt of blood transfusions and the development of chronic lung disease of prematurity? Med. Hypotheses. 2006;66:355–364. doi: 10.1016/j.mehy.2005.04.046.
    1. Collard K.J. Transfusion related morbidity in premature babies: Possible mechanisms and implications for practice. World J. Clin. Pediatr. 2014;3:19–29. doi: 10.5409/wjcp.v3.i3.19.
    1. Ozment C.P., Turi J.L. Iron overload following red blood cell transfusion and its impact on disease severity. Biochim. Biophys. Acta. 2009;1790:694–701. doi: 10.1016/j.bbagen.2008.09.010.
    1. Collard K.J., White D., Copplestone A. The influence of storage age on iron status, oxidative stress and antioxidant protection in paediatric packed cell units. High Speed Blood Transfus. Equip. 2013;12:210–219.
    1. Shah A., Brunskill S., Desborough M., Doree C., Trivella M., Stanworth S.J. Transfusion of red blood cells stored for shorter versus longer duration for all conditions. Cochrane Database Syst. Rev. 2018;12:CD010801. doi: 10.1002/14651858.CD010801.pub3.
    1. Karam O., Tucci M., Bateman S.T., Ducruet T., Spinella P.C., Randolph A.G., Lacroix J. Association between length of storage of red blood cell units and outcome of critically ill children: A prospective observational study. Crit. Care. 2010;14:R57. doi: 10.1186/cc8953.
    1. Fergusson D., Hebert P., Hogan D.L., Lebel L., Rouvinez-Bouali N., Smyth J.A., Sankaran K., Tinmouth A., Blajchman M.A., Kovacs L., et al. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants. JAMA. 2012;308:1443–1451. doi: 10.1001/2012.jama.11953.
    1. Spinella P.C., Tucci M., Fergusson D.A., Lacroix J., Hébert P.C., Leteurtre S., Schechtman K.B., Doctor A., Berg R.A., Bockelmann T., et al. Effect of fresh vs standard-issue red blood cell transfusions on multiple organ dysfunction syndrome in critically ill pediatric patients: A randomized clinical trial. JAMA. 2019;322:2179–2190. doi: 10.1001/jama.2019.17478.
    1. Valentine S.L., Bembea M.M., Muszynski J.A., Cholette J.M., Doctor A., Spinella P.C., Steiner M.E., Tucci M., Hassan N.E., Parker R.I., et al. Consensus recommendations for red blood cell transfusion practice in critically ill children from the pediatric critical care transfusion and anemia expertise initiative. Pediatr. Crit. Care Med. 2018;19:884–898. doi: 10.1097/PCC.0000000000001613.
    1. Howarth C., Banerjee J., Aladangady N. Red blood cell transfusion in preterm infants: Current evidence and controversies. Neonatology. 2018;114:7–16. doi: 10.1159/000486584.
    1. Raffaeli G., Ghirardello S., Passera S., Mosca F., Cavallaro G. Oxidative stress and neonatal respiratory extracorporeal membrane oxygenation. Front. Physiol. 2018;9:1739. doi: 10.3389/fphys.2018.01739.
    1. Keene S.D., Patel R.M., Stansfield B.K., Davis J., Josephson C.D., Winkler A.M. Blood product transfusion and mortality in neonatal extracorporeal membrane oxygenation. Transfusion. 2019;60:262–268. doi: 10.1111/trf.15626.
    1. Amin S.B., Myers G., Wang H. Association between neonatal iron overload and early human brain development in premature infants. Early Hum. Dev. 2012;88:583–587. doi: 10.1016/j.earlhumdev.2011.12.030.
    1. Friel J.K., Andrews W.L., Aziz K., Kwa P.G., Lepage G., L’Abbe M.R. A randomized trial of two levels of iron supplementation and developmental outcome in low birth weight infants. J. Pediatr. 2001;139:254–260. doi: 10.1067/mpd.2001.115069.
    1. Patruta S., Horl W. Iron and infection. Kidney Int. Suppl. 1999;69:S125–S130. doi: 10.1046/j.1523-1755.1999.055Suppl.69125.x.
    1. Jaeggi T., Kortman G.A.M., Moretti D., Chassard C., Holding P., Dostal A., Boekhorst J., Timmerman H.M., Swinkels R.W., Tjalsma H., et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2014;64:731–742. doi: 10.1136/gutjnl-2014-307720.
    1. Marseglia L., D’Angelo G., Manti M., Aversa S., Fiamingo C., Arrigo T., Barberi I., Mamì C., Gitto E. Visfatin: New marker of oxidative stress in preterm newborns. Int. J. Immunopathol. Pharmacol. 2015;29:23–29. doi: 10.1177/0394632015607952.
    1. Lee D., Blomhoff R., Jacobs D.R. ReviewIs serum gamma glutamyltransferase a marker of oxidative stress? Free Radic. Res. 2004;38:535–539. doi: 10.1080/10715760410001694026.

Source: PubMed

3
구독하다