Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization

Karlo Toljan, Bruce Vrooman, Karlo Toljan, Bruce Vrooman

Abstract

Naltrexone and naloxone are classical opioid antagonists. In substantially lower than standard doses, they exert different pharmacodynamics. Low-dose naltrexone (LDN), considered in a daily dose of 1 to 5 mg, has been shown to reduce glial inflammatory response by modulating Toll-like receptor 4 signaling in addition to systemically upregulating endogenous opioid signaling by transient opioid-receptor blockade. Clinical reports of LDN have demonstrated possible benefits in diseases such as fibromyalgia, Crohn's disease, multiple sclerosis, complex-regional pain syndrome, Hailey-Hailey disease, and cancer. In a dosing range at less than 1 μg per day, oral naltrexone or intravenous naloxone potentiate opioid analgesia by acting on filamin A, a scaffolding protein involved in μ-opioid receptor signaling. This dose is termed ultra low-dose naltrexone/naloxone (ULDN). It has been of use in postoperative control of analgesia by reducing the need for the total amount of opioids following surgery, as well as ameliorating certain side-effects of opioid-related treatment. A dosing range between 1 μg and 1 mg comprises very low-dose naltrexone (VLDN), which has primarily been used as an experimental adjunct treatment for boosting tolerability of opioid-weaning methadone taper. In general, all of the low-dose features regarding naltrexone and naloxone have been only recently and still scarcely scientifically evaluated. This review aims to present an overview of the current knowledge on these topics and summarize the key findings published in peer-review sources. The existing potential of LDN, VLDN, and ULDN for various areas of biomedicine has still not been thoroughly and comprehensively addressed.

Keywords: Crohn’s disease; fibromyalgia; glia; low-dose naltrexone; naloxone; naltrexone; pain.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Sudakin D. Naltrexone: Not Just for Opioids Anymore. J. Med. Toxicol. 2016;12:71–75. doi: 10.1007/s13181-015-0512-x.
    1. Bihari B. Low-dose naltrexone for normalizing immune system function. Altern. Ther. Health Med. 2013;19:56–65.
    1. Google Search of “Low-Dose Naltrexone” on March 7th 2018. [(accessed on 7 March 2018)]; Available online: .
    1. CFS Pharmacy Shop 2018. [(accessed on 9 March 2018)]; Available online: .
    1. Raknes G., Småbrekke L. A sudden and unprecedented increase in low dose naltrexone (LDN) prescribing in Norway. Patient and prescriber characteristics, and dispense patterns. A drug utilization cohort study. Pharmacoepidemiol. Drug Saf. 2017;26:136–142. doi: 10.1002/pds.4110.
    1. Schumacher M., Basbaum A., Ramana N. Opioid Agonists & Antagonists. In: Katzung B., Trevor A., editors. Basic & Clinical Pharmacology & Toxicology. 13th ed. Wiley; Hoboken, NJ, USA: 2014. p. 531.
    1. Burns L., Wang H.Y. Ultra-low-dose naloxone or naltrexone to improve opioid analgesia: The history, the mystery and a novel approach. Clin. Med. Insights Ther. 2010;2:857–868. doi: 10.4137/CMT.S4870.
    1. Wang X., Zhang Y., Peng Y., Hutchinson M.R., Rice K.C., Yin H., Watkins L.R. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br. J. Pharmacol. 2016;173:856–869. doi: 10.1111/bph.13394.
    1. Center for Substance Abuse Treatment (CSAT) Chapter 4—Oral Naltrexone. Inc. Alcohol Pharmacother. Into Med. Pract. (Treatment Improv. Protoc. Ser. No. 49) Substance Abuse and Mental Health Services Administration (US); Rockville, MD, USA: 2009. p. 30.
    1. Hospira Inc. Naloxone Prescribing Information 2018. Hospira Inc.; Lake Forest, IL, USA: 2018.
    1. Robinson A., Wermeling D.P. Intranasal naloxone administration for treatment of opioid overdose. Am. J. Heal. Pharm. 2014;71:2129–2135. doi: 10.2146/ajhp130798.
    1. Brown N., Panksepp J. Low-dose naltrexone for disease prevention and quality of life. Med. Hypotheses. 2009;72:333–337. doi: 10.1016/j.mehy.2008.06.048.
    1. Calabrese E.J. Hormetic mechanisms. Crit. Rev. Toxicol. 2013;43:580–606. doi: 10.3109/10408444.2013.808172.
    1. Younger J., Parkitny L., McLain D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin. Rheumatol. 2014;33:451–459. doi: 10.1007/s10067-014-2517-2.
    1. Agarwal D., Toljan K., Qureshi H., Vrooman B. Therapeutic value of naltrexone as a glial modulator. Glia. 2017;65:E103–E578. doi: 10.1002/glia.23157.
    1. Selfridge B.R., Wang X., Zhang Y., Yin H., Grace P.M., Watkins L.R., Ionescu D.F., Alpert J.E., Soskin D.P., Fava M. Structure–Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists. J. Med. Chem. 2015;58:5038–5052. doi: 10.1021/acs.jmedchem.5b00426.
    1. Hutchinson M.R., Zhang Y., Brown K., Coats B.D., Shridhar M., Sholar P.W., Patel S.J., Crysdale N.Y., Harrison J.A., Maier S.F., et al. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: Involvement of toll-like receptor 4 (TLR4) Eur. J. Neurosci. 2008;28:20–29. doi: 10.1111/j.1460-9568.2008.06321.x.
    1. Okun E., Griffioen K.J., Mattson M.P. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 2011;34:269–281. doi: 10.1016/j.tins.2011.02.005.
    1. Wadachi R., Hargreaves K.M. Trigeminal nociceptors express TLR-4 and CD14: A mechanism for pain due to infection. J. Dent. Res. 2006;85:49–53. doi: 10.1177/154405910608500108.
    1. Leow-Dyke S., Allen C., Denes A., Nilsson O., Maysami S., Bowie A.G., Rothwell N.J., Pinteaux E. Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J. Neuroinflamm. 2012;9:1. doi: 10.1186/1742-2094-9-230.
    1. Lehnardt S. Innate immunity and neuroinflammation in the CNS: The role of microglia in toll-like receptor-mediated neuronal injury. Glia. 2010;58:253–263. doi: 10.1002/glia.20928.
    1. Chopra P., Cooper M.S. Treatment of complex regional pain syndrome (CRPS) using low dose naltrexone (LDN) J. Neuroimmune Pharmacol. 2013;8:470–476. doi: 10.1007/s11481-013-9451-y.
    1. Janković B.D., Radulović J. Enkephalins, brain and immunity: Modulation of immune responses by methionine-enkephalin injected into the cerebral cavity. Int. J. Neurosci. 1992;67:241–270. doi: 10.3109/00207459208994788.
    1. Rahn K.A., McLaughlin P.J., Zagon I.S. Prevention and diminished expression of experimental autoimmune encephalomyelitis by low dose naltrexone (LDN) or opioid growth factor (OGF) for an extended period: Therapeutic implications for multiple sclerosis. Brain Res. 2011;1381:243–253. doi: 10.1016/j.brainres.2011.01.036.
    1. McCusker R.H., Kelley K.W. Immune-neural connections: How the immune system’s response to infectious agents influences behavior. J. Exp. Biol. 2013;216:84–98. doi: 10.1242/jeb.073411.
    1. Yoburn B.C., Duttaroy A., Shah S., Davis T. Opioid antagonist-induced receptor upregulation: Effects of concurrent agonist administration. Brain Res. Bull. 1994;33:237–240. doi: 10.1016/0361-9230(94)90259-3.
    1. Pierzchała-Koziec K., Dziedzicka-Wasylewska M., Oeltgen P., Zubel-Łojek J., Latacz A., Ocłoń E. The effect of CRH, dexamethasone and naltrexone on the mu, delta and kappa opioid receptor agonist binding in lamb hypothalamic-pituitary-adrenal axis. Folia Biol. 2015;63:187–193. doi: 10.3409/fb63_3.187.
    1. Zukin R.S., Sugarman J.R., Fitz-Syage M.L., Gardner E.L., Zukin S.R., Gintzler A.R. Naltrexone-induced opiate receptor supersensitivity. Brain Res. 1982;245:285–292. doi: 10.1016/0006-8993(82)90811-3.
    1. Tempel A., Gardner E.L., Zukin R.S. Neurochemical and functional correlates of naltrexone-induced opiate receptor up-regulation. J. Pharmacol. Exp. Ther. 1985;232:439–444.
    1. Zagon I.S., Donahue R., McLaughlin P.J. Targeting the opioid growth factor: Opioid growth factor receptor axis for treatment of human ovarian cancer. Exp. Biol. Med. (Maywood) 2013;238:579–587. doi: 10.1177/1535370213488483.
    1. Rogosnitzky M., Finegold M.J., McLaughlin P.J., Zagon I.S. Opioid growth factor (OGF) for hepatoblastoma: A novel non-toxic treatment. Investig. New Drugs. 2013;31:1066–1070. doi: 10.1007/s10637-012-9918-3.
    1. Donahue R.N., McLaughlin P.J., Zagon I.S. Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: Mechanistic evidence from a tissue culture model. Exp. Biol. Med. 2011;236:1036–1050. doi: 10.1258/ebm.2011.011121.
    1. McLaughlin P.J., Zagon I.S. Duration of opioid receptor blockade determines biotherapeutic response. Biochem. Pharmacol. 2015;97:236–246. doi: 10.1016/j.bcp.2015.06.016.
    1. Lutz P.-E., Kieffer B.L. Opioid receptors: Distinct roles in mood disorders. Trends Neurosci. 2013;36:195–206. doi: 10.1016/j.tins.2012.11.002.
    1. Shen K.-F., Crain S.M. Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res. 1989;491:227–242. doi: 10.1016/0006-8993(89)90059-0.
    1. Wang H.Y., Burns L.H. Naloxone’s pentapeptide binding site on filamin A blocks Mu opioid receptor-Gs coupling and CREB activation of acute morphine. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0004282.
    1. Burns L., Wang H.-Y. PTI-609: A Novel Analgesic that Binds Filamin A to Control Opioid Signaling. Recent Pat. CNS Drug Discov. 2010;5:210–220. doi: 10.2174/157488910793362386.
    1. Smith J.P., Stock H., Bingaman S., Mauger D., Rogosnitzky M., Zagon I.S. Low-dose naltrexone therapy improves active Crohn’s disease. Am. J. Gastroenterol. 2007;102:820–828. doi: 10.1111/j.1572-0241.2007.01045.x.
    1. Berkson B.M., Rubin D.M., Berkson A.J. Reversal of signs and symptoms of a B-cell lymphoma in a patient using only low-dose naltrexone. Integr. Cancer Ther. 2007;6:293–296. doi: 10.1177/1534735407306358.
    1. Zylicz Z., Stork N., Krajnik M. Severe pruritus of cholestasis in disseminated cancer: Developing a rational treatment strategy. A case report. J. Pain Symptom. Manag. 2005;29:100–103. doi: 10.1016/j.jpainsymman.2004.04.009.
    1. Younger J., Noor N., McCue R., MacKey S. Low-dose naltrexone for the treatment of fibromyalgia: Findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. Arthritis Rheumatol. 2013;65:529–538. doi: 10.1002/art.37734.
    1. Sharafaddinzadeh N., Moghtaderi A., Kashipazha D., Majdinasab N., Shalbafan B. The effect of low-dose naltrexone on quality of life of patients with multiple sclerosis: A randomized placebo-controlled trial. Mult. Scler. J. 2010;16:964–969. doi: 10.1177/1352458510366857.
    1. Li Z., You Y., Griffin N., Feng J., Shan F. Low-dose naltrexone (LDN): A promising treatment in immune-related diseases and cancer therapy. Int. Immunopharmacol. 2018;61:178–184. doi: 10.1016/j.intimp.2018.05.020.
    1. Lie M.R.K.L., van der Giessen J., Fuhler G.M., de Lima A., Peppelenbosch M.P., van der Ent C., van der Woude C.J. Low dose Naltrexone for induction of remission in inflammatory bowel disease patients. J. Transl. Med. 2018;16:55. doi: 10.1186/s12967-018-1427-5.
    1. Agrawal Y.P. Low dose naltrexone therapy in multiple sclerosis. Med. Hypotheses. 2005;64:721–724. doi: 10.1016/j.mehy.2004.09.024.
    1. Gironi M., Martinelli-Boneschi F., Sacerdote P., Solaro C., Zaffaroni M., Cavarretta R., Moiola L., Bucello S., Radaelli M., Pilato V., et al. A pilot trial of low-dose naltrexone in primary progressive multiple sclerosis. Mult. Scler. 2008;14:1076–1083. doi: 10.1177/1352458508095828.
    1. Turel A.P., Oh K.H., Zagon I.S., McLaughlin P.J. Low Dose Naltrexone for Treatment of Multiple Sclerosis: A Retrospective Chart Review of Safety and Tolerability. J. Clin. Psychopharmacol. 2015;35:609–611. doi: 10.1097/JCP.0000000000000373.
    1. Cree B.A.C., Kornyeyeva E., Goodin D.S. Pilot trial of low-dose naltrexone and quality of life in multiple sclerosis. Ann. Neurol. 2010 doi: 10.1002/ana.22006.
    1. Ludwig M.D., Turel A.P., Zagon I.S., McLaughlin P.J. Long-term treatment with low dose naltrexone maintains stable health in patients with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2016:2. doi: 10.1177/2055217316672242.
    1. Raknes G., Småbrekke L. Low dose naltrexone in multiple sclerosis: Effects on medication use. A quasi-experimental study. PLoS ONE. 2017;12:e0187423. doi: 10.1371/journal.pone.0187423.
    1. Ludwig M.D., Zagon I.S., McLaughlin P.J. Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone. Exp. Biol. Med. 2017;242:1524–1533. doi: 10.1177/1535370217724791.
    1. Zagon I.S., Donahue R.N., Bonneau R.H., McLaughlin P.J. T lymphocyte proliferation is suppressed by the opioid growth factor ([Met5]-enkephalin)-opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology. 2011;216:579–590. doi: 10.1016/j.imbio.2010.09.014.
    1. Zagon I.S., Donahue R.N., Bonneau R.H., McLaughlin P.J. B lymphocyte proliferation is suppressed by the opioid growth factor-opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology. 2011;216:173–183. doi: 10.1016/j.imbio.2010.06.001.
    1. Ludwig M.D., Zagon I.S., McLaughlin P.J. Featured Article: Modulation of the OGF–OGFr pathway alters cytokine profiles in experimental autoimmune encephalomyelitis and multiple sclerosis. Exp. Biol. Med. 2018;243:361–369. doi: 10.1177/1535370217749830.
    1. Weinstock L.B., Myers T.L., Walters A.S., Schwartz O.A., Younger J.W., Chopra P.J., Guarino A.H. Identification and Treatment of New Inflammatory Triggers for Complex Regional Pain Syndrome: Small Intestinal Bacterial Overgrowth and Obstructive Sleep Apnea. A A Case Rep. 2016;6:272–276. doi: 10.1213/XAA.0000000000000292.
    1. Younger J., Mackey S. Fibromyalgia Symptoms Are Reduced by Low-Dose Naltrexone: A Pilot Study. Pain Med. 2009;10:663–672. doi: 10.1111/j.1526-4637.2009.00613.x.
    1. Parkitny L., Younger J. Reduced Pro-Inflammatory Cytokines after Eight Weeks of Low-Dose Naltrexone for Fibromyalgia. Biomedicines. 2017;5:16. doi: 10.3390/biomedicines5020016.
    1. Ramanathan S., Panksepp J., Johnson B. Is fibromyalgia an endocrine/endorphin deficit disorder? Is low dose naltrexone a new treatment option? Psychosomatics. 2012;53:591–594. doi: 10.1016/j.psym.2011.11.006.
    1. Kariv R., Tiomny E., Grenshpon R., Dekel R., Waisman G., Ringel Y., Halpern Z. Low-dose naltrexone for the treatment of irritable bowel syndrome: A pilot study. Dig. Dis. Sci. 2006;51:2128–2133. doi: 10.1007/s10620-006-9289-8.
    1. Shannon A., Alkhouri N., Mayacy S., Kaplan B., Mahajan L. Low-dose naltrexone for treatment of duodenal Crohn’s disease in a pediatric patient. Inflamm. Bowel Dis. 2010;16:1457. doi: 10.1002/ibd.21185.
    1. Parker C.E., Nguyen T.M., Segal D., MacDonald J.K., Chande N. Low dose naltrexone for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2018;4:CD010410. doi: 10.1002/14651858.CD010410.pub3.
    1. Raknes G., Simonsen P., Småbrekke L. The effect of Low Dose Naltrexone on Medication in Inflammatory Bowel Disease: A Quasi Experimental before-and-after Prescription Database Study. J. Crohns Colitis. 2018 doi: 10.1093/ecco-jcc/jjy008.
    1. Segal D., MacDonald J.K., Chande N., MacDonald John K., Chande N. Low dose naltrexone for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2014:10–13. doi: 10.1002/14651858.CD010410.pub2.
    1. Tawfik D.I., Osman A.S., Tolba H.M., Khattab A., Abdel-Salam L.O., Kamel M.M. Evaluation of therapeutic effect of low dose naltrexone in experimentally-induced Crohn’s disease in rats. Neuropeptides. 2016;59:39–45. doi: 10.1016/j.npep.2016.06.003.
    1. Matters G.L., Harms J.F., McGovern C., Fitzpatrick L., Parikh A., Nilo N., Smith J.P. The opioid antagonist naltrexone improves murine inflammatory bowel disease. J. Immunotoxicol. 2008;5:179–187. doi: 10.1080/15476910802131469.
    1. Zagon I.S., McLaughlin P.J. Naltrexone Modulates Tumor Response in Mice with Neuroblastoma. Science. 1983;221:671–673. doi: 10.1126/science.6867737.
    1. Berkson B.M., Rubin D.M., Berkson A.J. The long-term survival of a patient with pancreatic cancer with metastases to the liver after treatment with the intravenous α-lipoic acid/low-dose naltrexone protocol. Integr. Cancer Ther. 2006;5:83–89. doi: 10.1177/1534735405285901.
    1. Berkson B.M., Rubin D.M., Berkson A.J. Revisiting the ALA/N (α-Lipoic Acid/Low-Dose Naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: A report of 3 new cases. Integr. Cancer Ther. 2009;8:416–422. doi: 10.1177/1534735409352082.
    1. Schwartz L., Buhler L., Icard P., Lincet H., Steyaert J.-M. Metabolic treatment of cancer: Intermediate results of a prospective case series. Anticancer Res. 2014;34:973–980.
    1. Ding E.L., Song Y., Manson J.E., Hunter D.J., Lee C.C., Rifai N., Buring J.E., Gaziano J.M., Liu S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009;361:1152–1163. doi: 10.1056/NEJMoa0804381.
    1. Campbell V., McGrath C., Corry A. Low-dose naltrexone: A novel treatment for Hailey-Hailey disease. Br. J. Dermatol. 2018;12:3218–3221. doi: 10.1111/bjd.16045.
    1. Ibrahim O., Hogan S.R., Vij A., Fernandez A.P. Low-dose naltrexone treatment of familial benign pemphigus (Hailey-Hailey disease) JAMA Dermatol. 2017;153:1015–1017. doi: 10.1001/jamadermatol.2017.2445.
    1. Bouvard M.P., Leboyer M., Launay J.M., Recasens C., Plumet M.H., Waller-Perotte D., Tabuteau F., Bondoux D., Dugas M., Lensing P., et al. Low-dose naltrexone effects on plasma chemistries and clinical symptoms in autism: A double-blind, placebo-controlled study. Psychiatry Res. 1995;58:191–201. doi: 10.1016/0165-1781(95)02601-R.
    1. Mischoulon D., Hylek L., Yeung A.S., Clain A.J., Baer L., Cusin C., Ionescu D.F., Alpert J.E., Soskin D.P., Fava M. Randomized, proof-of-concept trial of low dose naltrexone for patients with breakthrough symptoms of major depressive disorder on antidepressants. J. Affect. Disord. 2017;208:6–14. doi: 10.1016/j.jad.2016.08.029.
    1. Frech T., Novak K., Revelo M.P., Murtaugh M., Markewitz B., Hatton N., Scholand M.B., Frech E., Markewitz D., Sawitzke A.D. Low-dose naltrexone for pruritus in systemic sclerosis. Int. J. Rheumatol. 2011 doi: 10.1155/2011/804296.
    1. Hota D., Srinivasan A., Dutta P., Bhansali A., Chakrabarti A. Off-Label, Low-Dose Naltrexone for Refractory Painful Diabetic Neuropathy. Pain Med. 2016;17:790–791. doi: 10.1093/pm/pnv009.
    1. Roginsky G., Alexoff A., Ehrenpreis E.D. Initial Findings of an Open-Label Trial of Low-Dose Naltrexone for Symptomatic Mesenteric Panniculitis. J. Clin. Gastroenterol. 2015;49:794–795. doi: 10.1097/MCG.0000000000000398.
    1. Weinstock L.B., Brook J.B., Myers T.L., Goodman B. Successful treatment of postural orthostatic tachycardia and mast cell activation syndromes using naltrexone, immunoglobulin and antibiotic treatment. BMJ Case Rep. 2018 doi: 10.1136/bcr-2017-221405.
    1. Attarian S., Vallat J.-M., Magy L., Funalot B., Gonnaud P.-M., Lacour A., Péréon Y., Dubourg O., Pouget J., Micallef J., et al. An exploratory randomised double-blind and placebo-controlled phase 2 study of a combination of baclofen, naltrexone and sorbitol (PXT3003) in patients with Charcot-Marie-Tooth disease type 1A. Orphanet J. Rare Dis. 2014;9:199. doi: 10.1186/s13023-014-0199-0.
    1. Hesselink J.M.K., Kopsky D.J. Enhancing acupuncture by low dose naltrexone. Acupunct. Med. 2011;29:127–130. doi: 10.1136/aim.2010.003566.
    1. Mannelli P., Patkar A.A., Peindl K., Gottheil E., Wu L.-T., Gorelick D.A. Early Outcomes Following Low Dose Naltrexone Enhancement of Opioid Detoxification. Am. J. Addict. 2009;18:109–116. doi: 10.1080/10550490902772785.
    1. Mannelli P., Patkar A.A., Peindl K., Gorelick D.A., Wu L.-T., Gottheil E. Very low dose naltrexone addition in opioid detoxification: A randomized, controlled trial. Addict. Biol. 2009;14:204–213. doi: 10.1111/j.1369-1600.2008.00119.x.
    1. Mannelli P., Peindl K., Wu L.T., Patkar A.A., Gorelick D.A. The combination very low-dose naltrexone-clonidine in the management of opioid withdrawal. Am. J. Drug Alcohol. Abuse. 2012;38:200–205. doi: 10.3109/00952990.2011.644003.
    1. Mannelli P., Wu L.T., Peindl K.S., Gorelick D.A. Smoking and opioid detoxification: Behavioral changes and response to treatment. Nicotine Tob. Res. 2013;15:1705–1713. doi: 10.1093/ntr/ntt046.
    1. Mannelli P., Wu L.-T., Peindl K.S., Swartz M.S., Woody G.E. Extended release naltrexone injection is performed in the majority of opioid dependent patients receiving outpatient induction: A very low dose naltrexone and buprenorphine open label trial. Drug Alcohol. Depend. 2014;138:83–88. doi: 10.1016/j.drugalcdep.2014.02.002.
    1. Webster L.R., Butera P.G., Moran L.V., Wu N., Burns L.H., Friedmann N. Oxytrex Minimizes Physical Dependence While Providing Effective Analgesia: A Randomized Controlled Trial in Low Back Pain. J. Pain. 2006;7:937–946. doi: 10.1016/j.jpain.2006.05.005.
    1. Webster L.R. Oxytrex: An oxycodone and ultra-low-dose naltrexone formulation. Expert Opin. Investig. Drugs. 2007;16:1277–1283. doi: 10.1517/13543784.16.8.1277.
    1. Chindalore V.L., Craven R.A., Yu K.P., Butera P.G., Burns L.H., Friedmann N. Adding ultralow-dose naltrexone to oxycodone enhances and prolongs analgesia: A randomized, controlled trial of oxytrex. J. Pain. 2005;6:392–399. doi: 10.1016/j.jpain.2005.01.356.
    1. Krebs E.E., Gravely A., Nugent S., Jensen A.C., DeRonne B., Goldsmith E.S., Kroenke K., Bair M.J., Noorbaloochi S. Effect of Opioid vs Nonopioid Medications on Pain-Related Function in Patients With Chronic Back Pain or Hip or Knee Osteoarthritis Pain. JAMA. 2018;319:872. doi: 10.1001/jama.2018.0899.
    1. Firouzian A., Gholipour Baradari A., Alipour A., Emami Zeydi A., Zamani Kiasari A., Emadi S.A., Kheradmand B., Hadadi K. Ultra–low-dose Naloxone as an Adjuvant to Patient Controlled Analgesia (PCA) With Morphine for Postoperative Pain Relief Following Lumber Discectomy. J. Neurosurg. Anesthesiol. 2016;30:1. doi: 10.1097/ANA.0000000000000374.
    1. Xiao Y., Wu L., Zhou Q., Xiong W., Duan X., Huang X. A randomized clinical trial of the effects of ultra-low-dose naloxone infusion on postoperative opioid requirements and recovery. Acta Anaesthesiol. Scand. 2015;59:1194–1203. doi: 10.1111/aas.12560.
    1. Movafegh A., Nouralishahi B., Sadeghi M., Nabavian O. An ultra-low dose of naloxone added to lidocaine or lidocaine-fentanyl mixture prolongs axillary brachial plexus blockade. Anesth. Analg. 2009;109:1679–1683. doi: 10.1213/ANE.0b013e3181b9e904.
    1. Hay J.L., La Vincente S.F., Somogyi A.A., Chapleo C.B., White J.M. Potentiation of buprenorphine antinociception with ultra-low dose naltrexone in healthy subjects. Eur. J. Pain. 2011;15:293–298. doi: 10.1016/j.ejpain.2010.07.009.
    1. Breivik H., Werner M.U. Combining an oral opioid-receptor agonist and the antagonist naloxone: A smart drug design that removes some but not all adverse effects of the opioid analgesic. Scand. J. Pain. 2014;5:72–74. doi: 10.1016/j.sjpain.2014.02.004.
    1. Torkildsen O., Myhr K.-M., Wergeland S. Treatment-resistant immune thrombocytopenic purpura associated with LDN use in a patient with MS. Neurol Neuroimmunol. Neuroinflamm. 2014;1:e25. doi: 10.1212/NXI.0000000000000025.
    1. Patten D.K., Schultz B.G., Berlau D.J. The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn’s Disease, and Other Chronic Pain Disorders. Pharmacotherapy. 2018;12:3218–3221. doi: 10.1002/phar.2086.

Source: PubMed

3
구독하다