Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection

Zhonglei Wang, Liyan Yang, Zhonglei Wang, Liyan Yang

Abstract

The novel and highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become a continued focus of global attention due to the serious threat it poses to public health. There are no specific drugs available to combat SARS-CoV-2 infection. Natural products (carolacton, homoharringtonine, emetine, and cepharanthine) and natural product-inspired small molecules (ivermectin, GS-5734, EIDD-2801, and ebselen) are potential anti-SARS-CoV-2 agents that have attracted significant attention due to their broad-spectrum antiviral activities. Here, we review the research on potential landmark anti-SARS-CoV-2 agents, systematically discussing the importance of natural products and natural-product-inspired small molecules in the research and development of safe and effective antiviral agents.

Keywords: COVID-19; SARS-Cov-2; natural products; natural-product-inspired; potential anti-SARSCoV-2 agents.

Copyright © 2020 Wang and Yang.

Figures

Figure 1
Figure 1
Promising natural products for treating COVID-19. (A) Carolacton was isolated from the myxobacterium Sorangium cellulosum. (B) Homoharringtonine was isolated from the plant Cephalotaxus harringtonii. (C) Emetine was isolated from the plant Psychotria ipecacuanha.
Figure 2
Figure 2
Key strategies in the synthesis of carolacton and homoharringtonine. (A) Synthetic strategies of carolacton by Kirschning’s group, Phillips’s group and Goswami’s group, respectively. (B) Synthetic strategies of homoharringtonine by Gin’s group and Beaudry’s group, respectively.
Figure 3
Figure 3
Promising natural product cepharanthine for treating COVID-19 (image reproduced from ref. 38, bioRxiv, doi: 10.1101/2020.04.14.039925).
Figure 4
Figure 4
Promising natural-product-inspired ivermectin for treating COVID-19.
Figure 5
Figure 5
Promising natural-product-inspired GS-5734 for treating COVID-19 (image reproduced with permission from ref. 54, Acta Pharm. Sin. B, 2020, 10, 766-788).
Figure 6
Figure 6
Gram-scale synthesis of GS-5734.
Figure 7
Figure 7
Promising natural-product-inspired EIDD-2801 for treating COVID-19.
Figure 8
Figure 8
Gram-scale synthesis of EIDD-2801.
Figure 9
Figure 9
Other small molecules for treating COVID-19. (A) Unsuccessful attempt of lopinavir and ritonavir to treat COVID-19. (B) Regulators split on chloroquine and hydroxychloroquine to treat COVID-19.

References

    1. Agostini M. L., Pruijssers A. J., Chappell J. D., Gribble J., Lu X. T., Andres E. L., et al. (2019). Small-molecule antiviral β-d-N4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 93, e01348–e01319. 10.1128/JVI.01348-19
    1. Akinboye E. S., Rosen M. D., Denmeade S. R., Kwabi-Addo B., Bakare O. (2012). Design, synthesis, and evaluation of pH-dependent hydrolyzable emetine analogues as treatment for prostate cancer. J. Med. Chem. 55, 7450–7459. 10.1021/jm300426q
    1. Andersen P., Krpina K., Ianevski A., Shtaida N., Jo E., Yang J., et al. (2019). Novel antiviral activities of obatoclax, emetine, niclosamide, brequinar, and homoharringtonine. Viruses 11, 964. 10.3390/v11100964
    1. Anderson D. E., Cui J., Ye Q., Huang B. Y., Zu W. H., Gong J., et al. (2020). Orthogonal genome-wide screenings in bat cells identify MTHFD1 as a target of broad antiviral therapy. bioRxiv. 10.1101/2020.03.29.014209
    1. Ashburn T. T., Thor K. B. (2004). Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discovery 3, 673–683. 10.1038/nrd1468
    1. Bailly C. (2019). Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine 62, 152956. 10.1016/j.phymed.2019.152956
    1. Beigel J. H., Tomashek K. M., Dodd L. E., Mehta A. K., Zingman B. S., Kalil A. C., et al. (2020). Remdesivir for the treatment of Covid-19 - preliminary report. N. Engl. J. Med. 10.1056/NEJMoa2007764
    1. Bleasel M. D., Peterson G. M. (2020). Emetine, ipecac, ipecac alkaloids and analogues as potential antiviral agents for coronaviruses. Pharmaceuticals 13, 51. 10.3390/ph13030051
    1. Buonfrate D., Salas-Coronas J., Muñoz J., Maruri B. T., Rodari P., Castelli F., et al. (2019). Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): a multicentre, open-label, phase 3, randomised controlled superiority trial. Lancet Infect. Dis. 19, 1181–1190. 10.1016/S1473-3099(19)30289-0
    1. Burg R. W., Miller B. M., Baker E. E., Birnbaum J., Currie S. A., Hartman R., et al. (1979). Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15, 361–367. 10.1128/AAC.15.3.361
    1. Caly L., Druce J. D., Catton M. G., Jans D. A., Wagstaff K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 178, 104787. 10.1016/j.antiviral.2020.104787
    1. Campbell W. C., Fisher M. H., Stapley E. O., Albers-Schonberg G., Jacob T. A. (1983). Ivermectin: a potent new antiparasitic agent. Science 221, 823–828. 10.1126/science.6308762
    1. Campbell W. C. (2016). Ivermectin: a potent new antiparasitic agent. Angew . Chem. Int. Ed. 55, 10184–10189. 10.1002/anie.201601492
    1. Cao J., Forrest J. C., Zhang X. (2015). A screen of the NIH clinical collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res. 114, 1–10. 10.1016/j.antiviral.2014.11.010
    1. Cao B., Wang Y. M., Wen D. N., Liu W., Wang J. L., Fan G. H., et al. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N. Engl. J. Med. 382, 1787–1799. 10.1056/NEJMoa2001282
    1. Cho A., Saunders O. L., Butler T., Zhang L. J., Xu J., Vela J. E., et al. (2012). Synthesis and antiviral activity of a series of 1’-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett. 22, 2705–2707. 10.1016/j.bmcl.2012.02.105
    1. Choy K. T., Wong A. Y. L., Kaewpreedee P., Sia S. F., Chen D. D., Hui K. P. Y., et al. (2020). Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro . Antivir. Res. 178, 104786. 10.1016/j.antiviral.2020.104786
    1. Coronavirus disease (COVID-2019) situation reports 1-144;
    1. Dörnemann J., Burzio C., Ronsse A., Sprecher A., De Clerck H., Van Herp M., et al. (2017). First newborn baby to receive experimental therapies survives Ebola virus disease. J. Infect. Dis. 215, 171–174. 10.1093/infdis/jiw493
    1. Dong H. J., Wang Z. H., Meng W., Li C. C., Hu Y. X., Zhou L., et al. (2018). The natural compound homoharringtonine presents broad antiviral activity in vitro and in vivo. Viruses 10, 10. 10.3390/v10110601
    1. Dyall J., Coleman C. M., Hart B. J., Venkataraman T., Holbrook M. R., Kindrachuk J., et al. (2014). Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother. 58, 4885–4893. 10.1128/AAC.03036-14
    1. Eckelbarger J. D., Wilmot J. T., Epperson M. T., Thakur C. S., Shum D., Antczak C., et al. (2008). Synthesis of antiproliferative Cephalotaxus esters and their evaluation against several human hematopoietic and solid tumor cell lines: uncovering differential susceptibilities to multidrug resistance. Chem. Eur. J. 14, 4293–4306. 10.1002/chem.200701998
    1. Fang Z. H., Li Y. J., Chen Z., Wang J. J., Zhu L. H. (2013). Inhibition of signal transducer and activator of transcription 3 and cyclooxygenase-2 is involved in radiosensitization of cepharanthine in HeLa cells. Int. J. Gynecol. Cancer 23, 608–614. 10.1097/IGC.0b013e31828a05fd
    1. Ferner R. E., Aronson J. K. (2020). Remdesivir in covid-19: A drug with potential-don’t waste time on uncontrolled observations. BMJ 369, m1610. 10.1136/bmj.m1610
    1. Fu C. Z., Sikandar A., Donner J., Zaburannyi N., Herrmann J., Reck M., et al. (2020). The natural product carolacton inhibits folatedependent C1 metabolism by targeting FolD/MTHFD. Nat. Commu. 8, 1529. 10.1038/s41467-017-01671-5
    1. Ge Y. Y., Tian T. Z., Huang S. L., Wan F. P., Li J. X., Li S. Y., et al. (2020). A data-driven drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. bioRxiv. 10.1101/2020.03.11.986836
    1. Gong M. J., Li S. F., Xie Y. L., Zhao F. R., Shao J. J., Zhang Y. G., et al. (2019). Inhibitory effects of homoharringtonine on foot and mouth disease virus in vitro. J. Med. Virol. 91, 1595–1601. 10.1002/jmv.25494
    1. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A., et al. (2020). Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382, 2327–2336. 10.1056/NEJMoa2007016
    1. Hallside M. S., Brzozowski R. S., Wuest W. M., Phillips A. J. (2014). A concise synthesis of carolacton. Org. Lett. 16, 1148–1151. 10.1021/ol500004k
    1. Holshue M. L., DeBolt C., Lindquist S., Lofy K. H., Wiesman J., Bruce H., et al. (2020). First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382, 929–936. 10.1056/NEJMoa2001191
    1. Ianevski A., Yao R. A., Fenstad M. H., Biza S., Zusinaite E., Lysvand H., et al. (2020). Antiviral options against SARS-CoV-2 infection. bioRxiv. 10.1101/2020.05.12.091165
    1. Jacobs M., Rodger A., Bell D. J., Bhagani S., Cropley I., Filipe A., et al. (2016). Late Ebola virus relapse causing meningoencephalitis: a case report. Lancet 388, 498–503. 10.1016/S0140-6736(16)30386-5
    1. Jaffe S. (2020). Regulators split on antimalarials for COVID-19. Lancet. 395, 1179–1179. 10.1016/s0140-6736(20)30817-5
    1. Jansen R., Irschik H., Huch V., Schummer D., Steinmetz H., Bock M., et al. (2010). Carolacton-a macrolide ketocarbonic acid that reduces biofilm formation by the caries- and endocarditis-associated bacterium Streptococcus mutans. Eur. J. Org. Chem. 2010, 1284–1289. 10.1002/ejoc.200901126
    1. Jeon S., Ko M., Lee J., Choi I., Byun S. Y., Park S., et al. (2020). Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Ch. 64, e00819–20. 10.1128/AAC.00819-20
    1. Jin Z. M., Du X. Y., Xu Y. C., Deng Y. Q., Liu M. Q., Zhao Y., et al. (2020). Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature 582, 289–293. 10.1038/s41586-020-2223-y
    1. Jin Z. M., Zhao Y., Sun Y., Zhang B., Wang H. F., Wu Y., et al. (2020). Structural basis for the inhibition of COVID-19 virus main protease by carmofur, an antineoplastic drug. bioRxiv. 10.1101/2020.04.09.033233
    1. Ju X., Beaudry C. M. (2019). Total synthesis of (-)-cephalotaxine and (-)-homoharringtonine via furan oxidation-transannular mannich cyclization. Angew. Chem. Int. Ed. 58, 6752–6755. 10.1002/anie.201902174
    1. Kalil A. C. (2020). Treating COVID-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA 323, 1897–1898. 10.1001/jama.2020.4742
    1. Kil J., Lobarinas E., Spankovich C., Griffiths S. K., Antonelli P. J., Lynch E. D., et al. (2020). Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 390, 969–979. 10.1016/S0140-6736(17)31791-9
    1. Kim D. E., Min J. S., Jang M. S., Lee J. Y., Shin Y. S., Song J. H., et al. (2019). Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 9, 696. 10.3390/biom9110696
    1. Ko M., Jeon S., Ryu W. S., Kim S. (2020). Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells: Nafamostat is the most potent antiviral drug candidate. bioRxiv. 10.1101/2020.05.12.090035
    1. Kuilya T. K., Goswami R. K. (2017). Stereoselective total synthesis of carolacton. Org. Lett. 19, 2366–2369. 10.1021/acs.orglett.7b00903
    1. Kupferschmidt K., Cohen J. (2020). Race to find COVID-19 treatments accelerates. Science 367, 1412–1413. 10.1126/science.367.6485.1412
    1. Li G. D., De Clercq E. (2020). Therapeutic options for the 2019 novel coronavirus, (2019-nCoV). Nat. Rev. Drug Discovery 19, 149–150. 10.1038/d41573-020-00016-0
    1. Li F. S., Weng J. K. (2017). Demystifying traditional herbal medicine with modern approaches. Nat. Plants 3, 17109. 10.1038/nplants.2017.109
    1. Liu H. B., Ye F., Sun Q., Liang H., Li C. M., Lu R. J., et al. (2020). Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. bioRxiv. 10.1101/2020.04.10.035824
    1. Liu J., Cao R. Y., Xu M. Y., Wang X., Zhang H. Y., Hu H. R., et al. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery 6, 16. 10.1038/s41421-020-0156-0
    1. Ma C. L., Hurst B., Hu Y. M., Szeto T., Tarbet B., Wang J. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. bioRxiv. 10.1101/2020.04.20.051581
    1. Mullard A. (2013). 2012 FDA drug approvals. Nat. Rev. Drug Discovery 12, 87–90. 10.1038/nrd3946
    1. Mullard A. (2020). Hints of hope with remdesivir. Nat. Rev. Drug Discovery 19, 373.
    1. Newman D. J., Cragg G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803. 10.1021/acs.jnatprod.9b01285
    1. Nishimura H., Katagiri K., Sato K., Mayama M., Shimaoka N. (1956). Toyocamycin, a new anti-candida antibiotic. J. Antibiot. 9, 60–62.
    1. Ohashi H., Watashi K., Saso W., Shionoya K., Iwanami S., Hirokawa T., et al. (2020). Multidrug treatment with nelfinavir and cepharanthine against COVID-19. bioRxiv. 10.1101/2020.04.14.039925
    1. Okamoto M., Ono M., Baba M. (1998). Potent inhibition of HIV type 1 replication by an antiinflammatory alkaloid, cepharanthine, in chronically infected monocytic cells. AIDS Res. Hum. Retrovir. 14, 1239–1245. 10.1089/aid.1998.14.1239
    1. Painter G. R., Guthrie D. B., Bluemling G. R., Natchus M. R. (2019). N4-hydroxy cytidine and derivatives and anti-viral uses related thereto. WO 2019/113462 A1.
    1. Pariser D. M., Meinking T. L., Bell M., Ryan W. G. (2012). Topical 0.5% ivermectin lotion for treatment of head lice. N. Engl. J. Med. 367, 1687–1693. 10.1056/nejmoa1200107
    1. Patil S. A., Otter B. A., Klein S. (1994). 4-Aza-7,9-dideazaadenosine, a new cytotoxic synthetic C-nucleoside analogue of adenosine. Tetrahedron Lett. 35, 5339–5342. 10.1016/S0040-4039(00)73494-0
    1. Powell R. G., Weisleder D., Smith C. R., Rohwedder W. K. (1970). Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett. 11, 815–818. 10.1016/S0040-4039(01)97839-6
    1. Pruijssers A. J., George A. S., Schäfer A., Leist S. R., Gralinski L. E., Dinnon III K. H., et al. (2020). Remdesivir potently inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. bioRxiv. 10.1101/2020.04.27.064279
    1. Rothan H. A., Byrareddy S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433. 10.1016/j.jaut.2020.102433
    1. Rothan H. A., Stone S., Natekar J., Kumari P., Arora K., Kumar M. (2020). The FDA-approved gold drug auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology 547, 7–11. 10.1016/j.virol.2020.05.002
    1. Schmidt T., Kirschning A. (2012). Total synthesis of carolacton, a highly iotent biofilm inhibitor. Angew. Chem. Int. Ed. 51, 1063–1066. 10.1002/anie.201106762
    1. Schmith V. D., Zhou J., Lohmer L. R. L. (2020). The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19. Clin. Pharmacol. Ther. 10.1002/CPT.1889
    1. Sheahan T. P., Sims A. C., Graham R. L., Menachery V. D., Gralinski L. E., Case J. B., et al. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9, eaal3653. 10.1126/scitranslmed.aal3653
    1. Sheahan T. P., Sims A. C., Zhou S. T., Graham R. L., Pruijssers A. J., Agostini M. L., et al. (2020). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12, eabb5883. 10.1126/scitranslmed.abb5883
    1. Shen L., Niu J. W., Wang C. H., Huang B. Y., Wang W. L., Zhu N., et al. (2019). High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol. 93, e00023–e00019. 10.1128/JVI.00023-19
    1. Shen B. (2015). A new golden age of natural products drug discovery. Cell 163, 1297–1300. 10.1016/j.cell.2015.11.031
    1. Shi J. Z., Wen Z. Y., Zhong G. X., Yang H. L., Wang C., Huang B. Y., et al. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 368, 1016–1020. 10.1126/science.abb7015
    1. Smit C., Peeters M. Y. M., Anker J. N., Knibbe C. A. J. (2020). Chloroquine for SARS−CoV−2: implications of its unique pharmacokinetic and safety properties. Clin. Pharmacokinet. 59, 659–669. 10.1007/s40262-020-00891-1
    1. Su H. X., Yao S., Zhao W. F., Li M. J., Liu J., Shang W. J., et al. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. bioRxiv. 10.1101/2020.04.13.038687
    1. Summary on compassionate use remdesivir Gilead (Accessed May 5, 2020).
    1. Taccone F. S., Gorham J., Vincent J. L. (2020). Hydroxychloroquine in the management of critically ill patients with COVID-19: the need for an evidence base. Lancet Respir. Med. 8, 539–541. 10.1016/S2213-2600(20)30172-7
    1. Tang X. L., Wu C. C., Li X., Song Y. H., Yao X. M., Wu X. K., et al. (2020). On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7, 1012–1023. 10.1093/nsr/nwaa036
    1. The liverpool drug interaction group Evaluating the interaction risk of experimental COVID-19 therapies. (Accessed May 28, 2020).
    1. Toots M., Yoon J. J., Cox R. M., Hart M., Sticher Z. M., Makhsous N., et al. (2019). Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci. Transl. Med. 11, eaax5866. 10.1126/scitranslmed.aax5866
    1. Toots M., Yoon J. J., Hart M., Natchus M. G., Painter G. R., Plemper R. K. (2020). Quantitative efficacy paradigms of the influenza clinical drug candidate. Transl. Res. 218, 16–28. 10.1016/j.trsl.2019.12.002
    1. Touret F., Gilles M., Barral K., Nougairède A., Decroly E., de Lamballerie X., et al. (2020). In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. bioRxiv. 10.1101/2020.04.03.023846
    1. Wang C., Horby P. W., Hayden F. G., Gao G. F. (2020). A novel coronavirus outbreak of global health concern. Lancet 395, 470–473. 10.1016/S0140-6736(20)30185-9
    1. Wang M. L., Cao R. Y., Zhang L. K., Yang X. L., Liu J., Xu M. Y., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus, (2019-nCoV) in vitro . Cell Res. 30, 269–271. 10.1038/s41422-020-0282-0
    1. Warren T. K., Jordan R., Lo M. K., Ray A. S., Mackman R. L., Soloveva V., et al. (2016). Therapeutic Efficacy of The Small Molecule GS-5734 Against Ebola virus in rhesus monkeys. Nature 531, 381–385. 10.1038/nature17180
    1. Weston S., Coleman C. M., Haupt R., Logue J., Matthews K., Frieman M. B. (2020). Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. bioRxiv. 10.1101/2020.03.25.008482
    1. Wiegrebe W., Kramer W. J., Shamma M. (1984). The emetine alkaloids. J. Nat. Prod. 47, 397–408. 10.1021/np50033a001
    1. Williamson B. N., Feldmann F., Schwarz B., Meade-White K., Porter D. P., Schulz J. (2020). Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv. 10.1101/2020.04.15.043166
    1. Wu C. R., Liu Y., Yang Y. Y., Zhang P., Zhong W., Wang Y. L., et al. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 10, 766–788. 10.1016/j.apsb.2020.02.008
    1. Xing J., Shankar R., Drelich A., Paithankar S., Chekalin E., Dexheimer T., et al. (2020). Reversal of infected host gene expression identifies repurposed drug candidates for COVID-19. bioRxiv. 10.1101/2020.04.07.030734
    1. Xiong R., Zhang L. K., Li S. L., Sun Y., Ding M. Y., Wang Y., et al. (2020). Novel and potent inhibitors targeting DHODH, a rate-limiting enzyme in de novo pyrimidine biosynthesis, are broad-spectrum antiviral against RNA viruses including newly emerged coronavirus SARS-CoV-2. bioRxiv. 10.1101/2020.03.11.983056
    1. Yamamoto T., Koyama H., Kurajoh M., Shoji T., Tsutsumi Z., Moriwaki Y. (2011). Biochemistry of uridine in plasma. Clin. Chim. Acta 412, 1712–1724. 10.1016/j.cca.2011.06.006
    1. Yang S., Xu M., Lee E. M., Gorshkov K., Shiryaev S. A., He S. H., et al. (2018). Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery 4, 31. 10.1038/s41421-018-0034-1
    1. Yao X. T., Ye F., Zhang M., Cui C., Huang B. Y., Niu P. H., et al. (2020). In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 10.1093/cid/ciaa237
    1. Yao H. P., Lu X. Y., Chen Q., Xu K. J., Chen Y., Cheng L. F., et al. (2020). Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv. 10.1101/2020.04.14.20060160
    1. Yuan S. F., Chan J. F. W., Chik K. K. H., Chan C. C. Y., Tsang J. O. L., Liang R. H., et al. (2020). Discovery of the FDA-approved drugs bexarotene, cetilistat, diiodohydroxyquinoline, and abiraterone as potential COVID-19 treatments with a robust two-tier screening system. Pharmacol. Res. 159, 104960. 10.1016/j.phrs.2020.104960
    1. Zhang C. H., Wang Y. F., Liu X. J., Lu J. H., Qian C. W., Wan Z. Y., et al. (2005). Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chin. Med. J. 118, 493–496.
    1. Zhang L., Zhang D., Yuan C., Wang X. W., Li Y. F., Jia X. L., et al. (2020). Role of 1’-ribose cyano substitution for remdesivir to effectively inhibit both nucleotide addition and proofreading in SARS-CoV-2 viral RNA replication. bioRxiv. 10.1101/2020.04.27.063859
    1. Zhou P., Yang X. L., Wang X. G., Hu B., Zhang L., Zhang W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. 10.1038/s41586-020-2012-7
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. (2020). A novel coronavirus from patients with pneumonia in China 2019. N. Engl. J. Med. 382, 727–733. 10.1056/NEJMoa2001017

Source: PubMed

3
구독하다