Lumen-apposing metal stents (LAMS) versus plastic stents for EUS-guided drainage of walled-off necrosis (WON) (LVPWON): study protocol for a multicenter randomized controlled trial

Hui-Yun Zhu, Pei Xie, Ying-Xiao Song, Zhao-Shen Li, Zhen-Dong Jin, Yi-Qi Du, Hui-Yun Zhu, Pei Xie, Ying-Xiao Song, Zhao-Shen Li, Zhen-Dong Jin, Yi-Qi Du

Abstract

Background: Endoscopic ultrasonography (EUS)-guided drainage has become the first-line therapy for late peri-pancreatic fluid collection (PFC). Double pigtail plastic stents (DPPS) and lumen-apposing metal stents (LAMS) are commonly used for PFC drainage. Recently, a multi-institutional consensus on PFC drainage has recommended that LAMS should be the standard care for patients with walled-off necrosis (WON). However, given the poor quality of evidence, we aim to perform a large-scale randomized controlled trial to determine whether LAMS is superior to DPPS for WON drainage.

Methods/design: The study is an open-label, prospective, parallel-group, superiority, multicenter randomized controlled trial. Two hundred and fifty-six patients with WON who will attend 18 tertiary hospitals in China will be randomly allocated to the LAMS or DPPS group before the procedure. The primary endpoint is the clinical success at one month after drainage (reduction in the size of WON to < 2 cm). Secondary endpoints include technical success, operation time, recurrence, adverse events, and secondary interventions.

Discussion: The LVPWON trial is designed to determine whether LAMS is effective, safe, and superior to DPPS for WON drainage.

Trial registration: ClinicalTrials.gov, NCT03027895 . Registered on 14 January 2017.

Keywords: DPPS; EUS; LAMS; Trial; WON.

Conflict of interest statement

Ethics approval and consent to participate

Ethical approval has been obtained from Changhai Institutional Review Board (CHEC2017–192). Written informed consent will be obtained from each patient before randomization. Any subsequent amendments of the protocol need to be approved by the relevant ethical bodies before implementation.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Research flow chart
Fig. 2
Fig. 2
Lumen-apposing metal stent (Micro-TechCo. Ltd., Nanjing, China)
Fig. 3
Fig. 3
Schedule of enrollment, follow-up, and assessments. Basline0: screening of laboratory tests can be accepted the previous week in our hospital inspection report. Stent removal1: time from stenting to postoperative withdrawal (33 ± 3 days). Blood routine2: hemoglobin (HGB), erythrocyte count (RBC), platelet count (PLT), leukocyte count (WBC), neutrophil percentage (%), lymphocyte percentage (%). Liver and kidney function3: alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin, direct bilirubin (DBIL), indirect bilirubin (IBIL), alkaline phosphatase (ALP), glutamyl transferase (GGT), blood urea nitrogen (BUN), creatinine (Cr). Coagulation function4: prothrombin time (PT), fibrinogen (FIB), activated partial thromboplastin time (APTT), thrombin time (TT). Serum amylase5: assessed 3 h and 24 h after the operation. CT6: preoperative and postoperative enhanced CT examination, 3 months and 6 months postoperative CT examination. The primary endpoint7: immediate success rate of surgery, drainage success rate 1 month after surgery. Secondary endpoints8: the incidence of clinical complications, operation time, the recurrence rate of pancreatic pseudocyst within 1 month and 1 month after the operation, and secondary interventions

References

    1. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–111. doi: 10.1136/gutjnl-2012-302779.
    1. Bakker OJ, van Santvoort HC, van Brunschot S, Geskus RB, Besselink MG, Bollen TL, et al. Endoscopic transgastric vs surgical necrosectomy for infected necrotizing pancreatitis: a randomized trial. JAMA. 2012;307:1053–1061. doi: 10.1001/jama.2012.276.
    1. van Brunschot S, van Grinsven J, van Santvoort HC, Bakker OJ, Besselink MG, Boermeester MA, et al. Endoscopic or surgical step-up approach for infected necrotising pancreatitis: a multicentre randomised trial. Lancet. 2018;391:51–58. doi: 10.1016/S0140-6736(17)32404-2.
    1. Varadarajulu S, Bang JY, Sutton BS, Trevino JM, Christein JD, Wilcox CM. Equal efficacy of endoscopic and surgical cystogastrostomy for pancreatic pseudocyst drainage in a randomized trial. Gastroenterology. 2013;145:583–590. doi: 10.1053/j.gastro.2013.05.046.
    1. Teoh AYB, Dhir V, Kida M, Yasuda I, Jin ZD, Seo DW, et al. Consensus guidelines on the optimal management in interventional EUS procedures: results from the Asian EUS group RAND/UCLA expert panel. Gut. 2018;67:1209–1228. doi: 10.1136/gutjnl-2017-314341.
    1. Zhu H, Jiang F, Zhu J, Du Y, Jin Z, Li Z. Assessment of morbidity and mortality associated with EUS-guided FNA for pancreatic cystic lesions: a system review and meta-analysis. Dig Endosc. 2017;29:667–675. doi: 10.1111/den.12851.
    1. Shekhar Chander, Maher Ben, Forde Colm, Mahon Brinder Singh. Endoscopic ultrasound-guided pancreatic fluid collections' transmural drainage outcomes in 100 consecutive cases of pseudocysts and walled off necrosis: a single-centre experience from the United Kingdom. Scandinavian Journal of Gastroenterology. 2017;53(5):611–615. doi: 10.1080/00365521.2017.1398346.
    1. Walter D, Will U, Sanchez-Yague A, Brenke D, Hampe J, Wollny H, et al. A novel lumen-apposing metal stent for endoscopic ultrasound-guided drainage of pancreatic fluid collections: a prospective cohort study. Endoscopy. 2015;47:63–67. doi: 10.1055/s-0034-1391132.
    1. Sun S, Adler D, Guo J, Saftoiu A, Vilmann P, Fusaroli P, et al. A multi-institutional consensus on how to perform endoscopic ultrasound-guided peri-pancreatic fluid collection drainage and endoscopic necrosectomy. Endoscopic Ultrasound. 2017;6:285. doi: 10.4103/eus.eus_85_17.
    1. Siddiqui AA, Kowalski TE, Loren DE, Khalid A, Soomro A, Mazhar SM, et al. Fully covered self-expanding metal stents versus lumen-apposing fully covered self-expanding metal stent versus plastic stents for endoscopic drainage of pancreatic walled-off necrosis: clinical outcomes and success. Gastrointest Endosc. 2017;85:758–765. doi: 10.1016/j.gie.2016.08.014.
    1. Shah RJ, Shah JN, Waxman I, Kowalski TE, Sanchez-Yague A, Nieto J, et al. Safety and efficacy of endoscopic ultrasound-guided drainage of pancreatic fluid collections with lumen-apposing covered self-expanding metal stents. Clin Gastroenterol Hepatol. 2015;13:747–752. doi: 10.1016/j.cgh.2014.09.047.
    1. Sharaiha RZ, Tyberg A, Khashab MA, Kumta NA, Karia K, Nieto J, et al. Endoscopic therapy with lumen-apposing metal stents is safe and effective for patients with pancreatic walled-off necrosis. Clin Gastroenterol Hepatol. 2016;14:1797–1803. doi: 10.1016/j.cgh.2016.05.011.
    1. Lang GD, Fritz C, Bhat T, Das KK, Murad FM, Early DS, et al. EUS-guided drainage of peripancreatic fluid collections with lumen-apposing metal stents and plastic double-pigtail stents: comparison of efficacy and adverse event rates. Gastrointest Endosc. 2018;87:150–157. doi: 10.1016/j.gie.2017.06.029.
    1. Bang JY, Hasan M, Navaneethan U, Hawes R, Varadarajulu S. Lumen-apposing metal stents (LAMS) for pancreatic fluid collection (PFC) drainage: may not be business as usual. Gut. 2017;66:2054–2056. doi: 10.1136/gutjnl-2016-312812.
    1. Brimhall B, Han S, Tatman PD, Clark TJ, Wani S, Brauer B, et al. Increased incidence of Pseudoaneurysm bleeding with lumen-apposing metal stents compared to double pigtail plastic stents in patients with peripancreatic fluid collections. Clin Gastroenterol Hepatol. 2018;16:1521–1528. doi: 10.1016/j.cgh.2018.02.021.
    1. Watanabe Y, Mikata R, Yasui S, Ohyama H, Sugiyama H, Sakai Y, et al. Short- and long-term results of endoscopic ultrasound-guided transmural drainage for pancreatic pseudocysts and walled-off necrosis. World J Gastroenterol. 2017;23:7110–7118. doi: 10.3748/wjg.v23.i39.7110.
    1. Dhir V, Adler DG, Dalal A, Aherrao N, Shah R, Maydeo A. Early removal of biflanged metal stents in the management of pancreatic walled-off necrosis: a prospective study. Endoscopy. 2018;50:597–605. doi: 10.1055/s-0043-123575.
    1. Rinninella E, Kunda R, Dollhopf M, Sanchez-Yague A, Will U, Tarantino I, et al. EUS-guided drainage of pancreatic fluid collections using a novel lumen-apposing metal stent on an electrocautery-enhanced delivery system: a large retrospective study (with video) Gastrointest Endosc. 2015;82:1039–1046. doi: 10.1016/j.gie.2015.04.006.
    1. Cremer M, Deviere J, Engelholm L. Endoscopic management of cysts and pseudocysts in chronic pancreatitis: long-term follow-up after 7 years of experience. Gastrointest Endosc. 1989;35:1–9. doi: 10.1016/S0016-5107(89)72677-8.
    1. Adler DG, Taylor LJ, Hasan R, Siddiqui AA. A retrospective study evaluating endoscopic ultrasound-guided drainage of pancreatic fluid collections using a novel lumen-apposing metal stent on an electrocautery enhanced delivery system. Endoscopic Ultrasound. 2017;6:389–393. doi: 10.4103/eus.eus_4_17.
    1. Sahar N, Kozarek R, Kanji ZS, Ross AS, Gluck M, Gan SI, et al. Do lumen-apposing metal stents (LAMS) improve treatment outcomes of walled-off pancreatic necrosis over plastic stents using dual-modality drainage? Endosc Int Open. 2017;5:E1052–E1059. doi: 10.1055/s-0043-111794.
    1. Zhu H, Lin H, Jin Z, Du Y. Re-evaluation of the role of lumen-apposing metal stents (LAMS) for pancreatic fluid collection drainage. Gut. 2017;66:2054–2057. doi: 10.1136/gutjnl-2016-312812.

Source: PubMed

3
구독하다