Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma

Jamie L Maciaszek, Ninad Oak, Wenan Chen, Kayla V Hamilton, Rose B McGee, Regina Nuccio, Roya Mostafavi, Stacy Hines-Dowell, Lynn Harrison, Leslie Taylor, Elsie L Gerhardt, Annastasia Ouma, Michael N Edmonson, Aman Patel, Joy Nakitandwe, Alberto S Pappo, Elizabeth M Azzato, Sheila A Shurtleff, David W Ellison, James R Downing, Melissa M Hudson, Leslie L Robison, Victor Santana, Scott Newman, Jinghui Zhang, Zhaoming Wang, Gang Wu, Kim E Nichols, Chimene A Kesserwan, Jamie L Maciaszek, Ninad Oak, Wenan Chen, Kayla V Hamilton, Rose B McGee, Regina Nuccio, Roya Mostafavi, Stacy Hines-Dowell, Lynn Harrison, Leslie Taylor, Elsie L Gerhardt, Annastasia Ouma, Michael N Edmonson, Aman Patel, Joy Nakitandwe, Alberto S Pappo, Elizabeth M Azzato, Sheila A Shurtleff, David W Ellison, James R Downing, Melissa M Hudson, Leslie L Robison, Victor Santana, Scott Newman, Jinghui Zhang, Zhaoming Wang, Gang Wu, Kim E Nichols, Chimene A Kesserwan

Abstract

Patients harboring germline pathogenic biallelic variants in genes involved in the recognition and repair of DNA damage are known to have a substantially increased cancer risk. Emerging evidence suggests that individuals harboring heterozygous variants in these same genes may also be at heightened, albeit lesser, risk for cancer. Herein, we sought to determine whether heterozygous variants in RECQL4, the gene encoding an essential DNA helicase that is defective in children with the autosomal recessive cancer-predisposing condition Rothmund-Thomson syndrome (RTS), are associated with increased risk for childhood cancer. To address this question, we interrogated germline sequence data from 4435 pediatric cancer patients at St. Jude Children's Research Hospital and 1127 from the National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and identified 24 (0.43%) who harbored loss-of-function (LOF) RECQL4 variants, including five of 249 (2.0%) with osteosarcoma (OS). These RECQL4 variants were significantly overrepresented in children with OS, the cancer most frequently observed in patients with RTS, as compared to 134,187 noncancer controls in the Genome Aggregation Database (gnomAD v2.1; P = 0.00087, odds ratio [OR] = 7.1, 95% CI, 2.9-17). Nine of the 24 (38%) individuals possessed the same c.1573delT (p.Cys525Alafs) variant located in the highly conserved DNA helicase domain, suggesting that disruption of this domain is central to oncogenesis. Altogether these data expand our understanding of the genetic factors predisposing to childhood cancer and reveal a novel association between heterozygous RECQL4 LOF variants and development of pediatric OS.

Trial registration: ClinicalTrials.gov NCT01354002 NCT02530658 NCT00760656.

Keywords: Hodgkin lymphoma; T-cell acute lymphoblastic leukemias; craniopharyngioma; osteosarcoma; pre-B-cell acute lymphoblastic leukemia.

© 2019 Maciaszek et al.; Published by Cold Spring Harbor Laboratory Press.

Figures

Figure 1.
Figure 1.
Three-generation pedigree of a 16-yr-old female with recurrent osteosarcoma (arrowhead). Circles and squares denote female and male family members, respectively, and shaded figures denote persons with cancer. The individuals age in years (yr), age at diagnosis (dx.), and age at death (d.) are indicated on the pedigree where applicable. (NOS) Not otherwise specified.
Figure 2.
Figure 2.
Frequency of heterozygous RECQL4 LOF mutations across pediatric cancer types. (OS) osteosarcoma, (GCT) germ cell tumor, (HL) Hodgkin lymphoma, (ALL) acute lymphoblastic leukemia, (NHL) non-Hodgkin lymphoma, (AML) acute myeloid leukemia, (CNS) central nervous system, (LOF) loss-of-function.
Figure 3.
Figure 3.
Distribution of the germline heterozygous RECQL4 LOF mutations in the pediatric cancer cohort examined in this study and in gnomAD noncancer v2.1. Known domains of the RECQL4 protein are as shown.
Figure 4.
Figure 4.
Pedigrees of families with RECQL4 LOF mutations.

References

    1. Ahmed M, Rahman N. 2006. ATM and breast cancer susceptibility. Oncogene 25: 5906–5911. 10.1038/sj.onc.1209873
    1. AlDubayan SH, Giannakis M, Moore ND, Han GC, Reardon B, Hamada T, Mu XJ, Nishihara R, Qian Z, Liu L, et al. 2018. Inherited DNA-repair defects in colorectal cancer. Am J Hum Genet 102: 401–414. 10.1016/j.ajhg.2018.01.018
    1. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, Lee A, Subramanian D, De Leeneer K, Fostira F, et al. 2014. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371: 497–506. 10.1056/NEJMoa1400382
    1. Bonache S, Esteban I, Moles-Fernández A, Tenés A, Duran-Lozano L, Montalban G, Bach V, Carrasco E, Gadea N, López-Fernández A, et al. 2018. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J Cancer Res Clin Oncol 144: 2495–2513. 10.1007/s00432-018-2763-9
    1. Cao F, Lu L, Abrams SA, Hawthorne KM, Tam A, Jin W, Dawson B, Shypailo R, Liu H, Lee B, et al. 2017. Generalized metabolic bone disease and fracture risk in Rothmund–Thomson syndrome. Hum Mol Genet 26: 3046–3055. 10.1093/hmg/ddx178
    1. Chu WK, Hickson ID. 2009. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 9: 644–654. 10.1038/nrc2682
    1. Colombo EA, Locatelli A, Cubells Sánchez L, Romeo S, Elcioglu NH, Maystadt I, Esteve Martínez A, Sironi A, Fontana L, Finelli P, et al. 2018. Rothmund–Thomson syndrome: insights from new patients on the genetic variability underpinning clinical presentation and cancer outcome. Int J Mol Sci 19: 1103 10.3390/ijms19041103
    1. Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P, Ramamoorthy M, Wang Z, Singh DK, Akbari M, Kasiviswanathan R, et al. 2012. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11: 456–466. 10.1111/j.1474-9726.2012.00803.x
    1. Croteau DL, Popuri V, Opresko PL, Bohr VA. 2014. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83: 519–552. 10.1146/annurev-biochem-060713-035428
    1. Cybulski C, Carrot-Zhang J, Kluźniak W, Rivera B, Kashyap A, Wokołorczyk D, Giroux S, Nadaf J, Hamel N, Zhang S, et al. 2015. Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet 47: 643–646. 10.1038/ng.3284
    1. Di Ruscio A, Welner RS, Tenen DG, Amabile G. 2016. The second hit of DNA methylation. Mol Cell Oncol 3: e1093690 10.1080/23723556.2015.1093690
    1. Esai Selvan M, Klein RJ, Gümüş ZH. 2019. Rare, pathogenic germline variants in Fanconi anemia genes increase risk for squamous lung cancer. Clin Cancer Res 25: 1517–1525. 10.1158/1078-0432.CCR-18-2660
    1. Esteban-Jurado C, Franch-Expósito S, Muñoz J, Ocaña T, Carballal S, López-Cerón M, Cuatrecasas M, Vila-Casadesús M, Lozano JJ, Serra E, et al. 2016. The Fanconi anemia DNA damage repair pathway in the spotlight for germline predisposition to colorectal cancer. Eur J Hum Genet 24: 1501–1505. 10.1038/ejhg.2016.44
    1. Helgason H, Rafnar T, Olafsdottir HS, Jonasson JG, Sigurdsson A, Stacey SN, Jonasdottir A, Tryggvadottir L, Alexiusdottir K, Haraldsson A, et al. 2015. Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet 47: 906–910. 10.1038/ng.3342
    1. Hickson ID. 2003. RecQ helicases: caretakers of the genome. Nat Rev Cancer 3: 169–178. 10.1038/nrc1012
    1. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, de Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, et al. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609. 10.1126/science.1073834
    1. Jalkh N, Chouery E, Haidar Z, Khater C, Atallah D, Ali H, Marafie MJ, Al-Mulla MR, Al-Mulla F, Megarbane A. 2017. Next-generation sequencing in familial breast cancer patients from Lebanon. BMC Med Genomics 10: 8 10.1186/s12920-017-0244-7
    1. Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM, Furuichi Y. 1999. Mutations in RECQL4 cause a subset of cases of Rothmund–Thomson syndrome. Nat Genet 22: 82–84. 10.1038/8788
    1. Kwong A, Shin VY, Cheuk IW, Chen J, Au CH, Ho DN, Chan TL, Ma ES, Akbari MR, Narod SA. 2016. Germline RECQL mutations in high risk Chinese breast cancer patients. Breast Cancer Res Treat 157: 211–215. 10.1007/s10549-016-3784-1
    1. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536: 285–291. 10.1038/nature19057
    1. Li N, Rowley SM, Goode DL, Amarasinghe KC, McInerny S, Devereux L, Wong-Brown MW, Lupat R, Lee JEA, Hughes S, et al. 2018. Mutations in RECQL are not associated with breast cancer risk in an Australian population. Nat Genet 50: 1346–1348. 10.1038/s41588-018-0206-9
    1. Lowery MA, Wong W, Jordan EJ, Lee JW, Kemel Y, Vijai J, Mandelker D, Zehir A, Capanu M, Salo-Mullen E, et al. 2018. Prospective evaluation of germline alterations in patients with exocrine pancreatic neoplasms. J Natl Cancer Inst 110: 1067–1074. 10.1093/jnci/djy024
    1. Lu H, Shamanna RA, Keijzers G, Anand R, Rasmussen LJ, Cejka P, Croteau DL, Bohr VA. 2016. RECQL4 promotes DNA end resection in repair of DNA double-strand breaks. Cell Rep 16: 161–173. 10.1016/j.celrep.2016.05.079
    1. Mandelker D, Zhang L, Kemel Y, Stadler ZK, Joseph V, Zehir A, Pradhan N, Arnold A, Walsh MF, Li Y, et al. 2017. Mutation detection in patients with advanced cancer by universal sequencing of cancer-related genes in tumor and normal DNA vs guideline-based germline testing. JAMA 318: 825–835. 10.1001/jama.2017.11137
    1. Mazor T, Pankov A, Johnson BE, Hong C, Hamilton EG, Bell RJ, Smirnov IV, Reis GF, Phillips JJ, Barnes MJ, et al. 2015. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 28: 307–317. 10.1016/j.ccell.2015.07.012
    1. Na R, Wu Y, Jiang G, Yu H, Lin X, Wang M, Conran CA, Fantus RJ, Zhang N, Liu S, et al. 2018. Germline mutations in DNA repair genes are associated with bladder cancer risk and unfavourable prognosis. BJU Int 122: 808–813. 10.1111/bju.14370
    1. Nishijo K, Nakayama T, Aoyama T, Okamoto T, Ishibe T, Yasura K, Shima Y, Shibata KR, Tsuboyama T, Nakamura T, et al. 2004. Mutation analysis of the RECQL4 gene in sporadic osteosarcomas. Int J Cancer 111: 367–372. 10.1002/ijc.20269
    1. Paulo P, Maia S, Pinto C, Pinto P, Monteiro A, Peixoto A, Teixeira MR. 2018. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet 14: e1007355 10.1371/journal.pgen.1007355
    1. Penkert J, Schmidt G, Hofmann W, Schubert S, Schieck M, Auber B, Ripperger T, Hackmann K, Sturm M, Prokisch H, et al. 2018. Breast cancer patients suggestive of Li–Fraumeni syndrome: mutational spectrum, candidate genes, and unexplained heredity. Breast Cancer Res 20: 87 10.1186/s13058-018-1011-1
    1. Quezada Urban R, Díaz Velásquez C, Gitler R, Rojo Castillo M, Sirota Toporek M, Figueroa Morales A, Moreno García O, García Esquivel L, Torres Mejía G, Dean M, et al. 2018. Comprehensive analysis of germline variants in Mexican patients with hereditary breast and ovarian cancer susceptibility. Cancers (Basel) 10: 361 10.3390/cancers10100361
    1. Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, Mazoyer S, Chenevix-Trench G, Easton DF, Antoniou AC, et al. 2015. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313: 1347–1361. 10.1001/jama.2014.5985
    1. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R, Neveling K, Kelly P, Seal S, Freund M, et al. 2007. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39: 162–164. 10.1038/ng1947
    1. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, et al. 2006. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38: 873–875. 10.1038/ng1837
    1. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405–423. 10.1038/gim.2015.30
    1. Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, Parker M, Jiao Y, Ma X, Liu Y, et al. 2018. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun 9: 3962 10.1038/s41467-018-06485-7
    1. Schrader KA, Cheng DT, Joseph V, Prasad M, Walsh M, Zehir A, Ni A, Thomas T, Benayed R, Ashraf A, et al. 2016. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncol 2: 104–111. 10.1001/jamaoncol.2015.5208
    1. Siitonen HA, Kopra O, Kääriäinen H, Haravuori H, Winter RM, Säämänen A-M, Peltonen L, Kestilä M. 2003. Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet 12: 2837–2844. 10.1093/hmg/ddg306
    1. Siitonen HA, Sotkasiira J, Biervliet M, Benmansour A, Capri Y, Cormier-Daire V, Crandall B, Hannula-Jouppi K, Hennekam R, Herzog D, et al. 2009. The mutation spectrum in RECQL4 diseases. Eur J Hum Genet 17: 151–158. 10.1038/ejhg.2008.154
    1. Slavin TP, Neuhausen SL, Nehoray B, Niell-Swiller M, Solomon I, Rybak C, Blazer K, Adamson A, Yang K, Sand S, et al. 2018. The spectrum of genetic variants in hereditary pancreatic cancer includes Fanconi anemia genes. Fam Cancer 17: 235–245. 10.1007/s10689-017-0019-5
    1. Sun J, Wang Y, Xia Y, Xu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, et al. 2015. Mutations in RECQL gene are associated with predisposition to breast cancer. PLoS Genet 11: e1005228 10.1371/journal.pgen.1005228
    1. Swift M, Reitnauer PJ, Morrell D, Chase CL. 1987. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316: 1289–1294. 10.1056/NEJM198705213162101
    1. Tedaldi G, Tebaldi M, Zampiga V, Danesi R, Arcangeli V, Ravegnani M, Cangini I, Pirini F, Petracci E, Rocca A, et al. 2017. Multiple-gene panel analysis in a case series of 255 women with hereditary breast and ovarian cancer. Oncotarget 8: 47064 10.18632/oncotarget.16791
    1. Thangavel S, Mendoza-Maldonado R, Tissino E, Sidorova JM, Yin J, Wang W, Monnat RJ, Falaschi A, Vindigni A. 2010. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol 30: 1382–1396. 10.1128/MCB.01290-09
    1. Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, Byrd P, Taylor M, Easton DF. 2005. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97: 813–822. 10.1093/jnci/dji141
    1. Van Maldergem L, Siitonen HA, Jalkh N, Chouery E, De Roy M, Delague V, Muenke M, Jabs EW, Cai J, Wang LL, et al. 2006. Revisiting the craniosynostosis-radial ray hypoplasia association: Baller–Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 43: 148–152. 10.1136/jmg.2005.031781
    1. Van Maldergem L, Piard J, Larizza L, Wang L. 2007. Baller–Gerold syndrome. Internet, University of Washington, Seattle.
    1. Wang LL, Plon SE. 2019. Rothmund–Thomson syndrome. GeneReviews® Retrieved Feb 11, 2019, from .
    1. Wang LL, Gannavarapu A, Kozinetz CA, Levy ML, Lewis RA, Chintagumpala MM, Ruiz-Maldanado R, Contreras-Ruiz J, Cunniff C, Erickson RP, et al. 2003. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund–Thomson syndrome. J Natl Cancer Inst 95: 669–674. 10.1093/jnci/95.9.669
    1. Wang Z, Wilson CL, Easton J, Thrasher A, Mulder H, Liu Q, Hedges DJ, Wang S, Rusch MC, Edmonson MN, et al. 2018. Genetic risk for subsequent neoplasms among long-term survivors of childhood cancer. J Clin Oncol 36: 2078–2087. 10.1200/JCO.2018.77.8589
    1. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, et al. 2015. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373: 2336–2346. 10.1056/NEJMoa1508054

Source: PubMed

3
구독하다