Whole-Body Electromyostimulation Combined With Individualized Nutritional Support Improves Body Composition in Patients With Hematological Malignancies - A Pilot Study

Kristin Schink, Dejan Reljic, Hans J Herrmann, Julia Meyer, Andreas Mackensen, Markus F Neurath, Yurdagül Zopf, Kristin Schink, Dejan Reljic, Hans J Herrmann, Julia Meyer, Andreas Mackensen, Markus F Neurath, Yurdagül Zopf

Abstract

Patients undergoing the complex treatment for hematological malignancies are exposed to a high physiological and psychological distress inducing fatigue and physical inactivity. In line with cancer-related metabolic changes patients are predisposed for skeletal muscle mass loss that leads to a functional decline, affects therapeutic success, and quality of life. Benefits of physical exercise and nutritional interventions on muscle maintenance are observed in solid cancer patients, but marginally investigated in patients with hematological cancer. We here studied the effects of a combined supportive exercise and nutrition intervention using whole-body electromyostimulation (WB-EMS) training and individualized nutritional support in patients actively treated for hematological malignancy. In a controlled pilot trial, 31 patients (67.7% male; 58.0 ± 16.7 years) with various hematological cancers were allocated to a control group (n = 9) receiving nutritional support of usual care regarding a high protein intake (>1.0 g/kg/d) or to a physical exercise group (n = 22) additionally performing WB-EMS training twice weekly for 12 weeks. Bodyweight and body composition assessed by bioelectrical impedance analysis were measured every 4 weeks. Physical function, blood parameters, quality of life and fatigue were assessed at baseline and after 12 weeks. No WB-EMS-related adverse effects occurred. Patients attending the exercise program presented a higher skeletal muscle mass than controls after 12-weeks (1.51 kg [0.41, 2.60]; p = 0.008). In contrast, patients of the control group showed a higher fat mass percentage than patients of the WB-EMS group (-4.46% [-7.15, -1.77]; p = 0.001) that was accompanied by an increase in serum triglycerides in contrast to a decrease in the WB-EMS group (change ± SD, control 36.3 ± 50.6 mg/dl; WB-EMS -31.8 ± 68.7 mg/dl; p = 0.064). No significant group differences for lower limb strength, quality of life, and fatigue were detected. However, compared to controls the WB-EMS group significantly improved in physical functioning indicated by a higher increase in the 6-min-walking distance (p = 0.046). A combined therapeutic intervention of WB-EMS and protein-rich nutritional support seems to be safe and effective in improving skeletal muscle mass and body composition in hematological cancer patients during active oncological treatment. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02293239.

Keywords: body composition; cancer; exercise; hematological malignancies; nutrition; physical function; skeletal muscle mass; whole-body electromyostimulation.

Figures

FIGURE 1
FIGURE 1
Patient flowchart. The flowchart shows the number of the allocated patients and the number of patients who dropped out during study course with dropout reasons and the number of patients who completed the whole intervention period of 12 weeks. During the study, body composition analysis was missed by 1 patient of the WB-EMS group at week 4 and 1 control and 2 WB-EMS patients at week 8. WB-EMS, whole-body electromyostimulation.
FIGURE 2
FIGURE 2
Changes in body composition during the 12-week intervention period. Unadjusted estimated marginal means with 95% confidence intervals of the body composition parameters (A) skeletal muscle mass, (B) fat mass percentage, (C) bodyweight, (D) FFMI, (E) FMI, and (F) phase angle are illustrated for the control group and the WB-EMS group over the 12-week study course. WB-EMS, whole-body electromyostimulation; FMI, fat mass index; FFMI, fat free mass index.
FIGURE 3
FIGURE 3
Relationship between daily protein intake and change in skeletal muscle mass. Pearson correlation between daily protein intake (g/kg bodyweight) and change in skeletal muscle mass (kg) of the control (n = 6) and the WB-EMS group (n = 9) after 12 weeks. SMM, skeletal muscle mass; WB-EMS, whole-body electromyostimulation.

References

    1. Aaronson N. K., Ahmedzai S., Bergman B., Bullinger M., Cull A., Duez N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 85 365–376. 10.1093/jnci/85.5.365
    1. Allart-Vorelli P., Porro B., Baguet F., Michel A., Cousson-Gelie F. (2015). Haematological cancer and quality of life: a systematic literature review. Blood Cancer J. 5:e305. 10.1038/bcj.2015.29
    1. Arends J., Bachmann P., Baracos V., Barthelemy N., Bertz H., Bozzetti F., et al. (2016). ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 36 11–48. 10.1016/j.clnu.2016.07.015
    1. Arends J., Bertz H., Bischoff S. C., Fietkau R., Herrmann H. J., Holm E., et al. (2015). S3-Guideline of the German Society for Nutritional Medicine (DGEM) in Cooperation with the DGHO, the ASORS and the AKE. Aktuel. Ernahrungsmed. 40 e1–e74. 10.1055/s-0035-1552741
    1. Battaglini C. L. (2011). “Physical activity and hematological cancer survivorship,” in Physical Activity and Cancer eds Courneya K. S., Friedenreich C. M. (Berlin: Springer; ) 275–304.
    1. Bergenthal N., Will A., Streckmann F., Wolkewitz K.-D., Monsef I., Engert A., et al. (2014). Aerobic physical exercise for adult patients with haematological malignancies. Cochrane Database Syst. Rev. CD009075. 10.1002/14651858.CD009075.pub2
    1. Blauwhoff-Buskermolen S., Versteeg K. S., de van der Schueren M. A., den Braver N. R., Berkhof J., Langius J. A., et al. (2016). Loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal cancer. J. Clin. Oncol. 34 1339–1344. 10.1200/jco.2015.63.6043
    1. Bosy-Westphal A., Jensen B. (2017). Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur. J. Clin. Nutr. 71 1061–1067. 10.1038/ejcn.2017.27
    1. Bosy-Westphal A., Later W., Hitze B., Sato T., Kossel E., Gluer C. C., et al. (2008). Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes Facts 1 319–324. 10.1159/000176061
    1. Buckley S. A., Othus M., Estey E. H., Walter R. B. (2015). The treatment-related mortality score is associated with non-fatal adverse events following intensive AML induction chemotherapy. Blood Cancer J. 5:e276. 10.1038/bcj.2014.97
    1. Calleja Fernandez A., Pintor de la Maza B., Vidal Casariego A., Villar Taibo R., Lopez Gomez J. J., Cano Rodriguez I., et al. (2015). Food intake and nutritional status influence outcomes in hospitalized hematology-oncology patients. Nutr. Hosp. 31 2598–2605. 10.3305/nh.2015.31.6.8674
    1. Chakraborty H., Gu H. (2009). A Mixed Model Approach for Intent-to-Treat Analysis in Longitudinal Clinical Trials With Missing Values. Research Triangle Park, NC: RTI Press; 10.3768/rtipress.2009.mr.0009.0903
    1. Chu M. P., Lieffers J., Ghosh S., Belch A., Chua N. S., Fontaine A., et al. (2017). Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J. Cachexia Sarcopenia Muscle 8 298–304. 10.1002/jcsm.12161
    1. Coleman E. A., Coon S., Hall-Barrow J., Richards K., Gaylor D., Stewart B. (2003). Feasibility of exercise during treatment for multiple myeloma. Cancer Nurs. 26 410–419. 10.1097/00002820-200310000-00012
    1. Coleman E. A., Goodwin J. A., Coon S. K., Richards K., Enderlin C., Kennedy R., et al. (2011). Fatigue, sleep, pain, mood, and performance status in patients with multiple myeloma. Cancer Nurs. 34 219–227. 10.1097/NCC.0b013e3181f9904d
    1. Copelan E. A. (2006). Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354 1813–1826. 10.1056/NEJMra052638
    1. Cunningham B. A., Morris G., Cheney C. L., Buergel N., Aker S. N., Lenssen P. (1986). Effects of resistive exercise on skeletal muscle in marrow transplant recipients receiving total parenteral nutrition. JPEN J. Parenter. Enteral. Nutr. 10 558–563. 10.1177/0148607186010006558
    1. Danaher E. H., Ferrans C., Verlen E., Ravandi F., van Besien K., Gelms J., et al. (2006). Fatigue and physical activity in patients undergoing hematopoietic stem cell transplant. Oncol. Nurs. Forum 33 614–624. 10.1188/06.onf.614-624
    1. Ellulu M. S., Patimah I., Khaza’ai H., Rahmat A., Abed Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci. 13 851–863. 10.5114/aoms.2016.58928
    1. Fearon K., Arends J., Baracos V. (2013). Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10 90–99. 10.1038/nrclinonc.2012.209
    1. Fritzsche D., Fruend A., Schenk S., Mellwig K. P., Kleinoder H., Gummert J., et al. (2010). Electromyostimulation (EMS) in cardiac patients. Will EMS training be helpful in secondary prevention? Herz 35 34–40. 10.1007/s00059-010-3268-8
    1. Gan J. H., Sim C. Y., Santorelli L. A. (2016). The effectiveness of exercise programmes in patients with multiple myeloma: a literature review. Crit. Rev. Oncol. Hematol. 98 275–289. 10.1016/j.critrevonc.2015.11.005
    1. Greenfield D. M., Boland E., Ezaydi Y., Ross R. J., Ahmedzai S. H., Snowden J. A. (2014). Endocrine, metabolic, nutritional and body composition abnormalities are common in advanced intensively-treated (transplanted) multiple myeloma. Bone Marrow Transplant. 49 907–912. 10.1038/bmt.2014.63
    1. GroDelta J. P., Nattenmuller J., Hemmer S., Tichy D., Krzykalla J., Goldschmidt H., et al. (2017). Body fat composition as predictive factor for treatment response in patients with newly diagnosed multiple myeloma – subgroup analysis of the prospective GMMG MM5 trial. Oncotarget 8 68460–68471. 10.18632/oncotarget.19536
    1. Groeneveldt L., Mein G., Garrod R., Jewell A. P., Van Someren K., Stephens R., et al. (2013). A mixed exercise training programme is feasible and safe and may improve quality of life and muscle strength in multiple myeloma survivors. BMC Cancer 13:31. 10.1186/1471-2407-13-31
    1. Guglielmi V., Nowis D., Tinelli M., Malatesta M., Paoli L., Marini M., et al. (2017). Bortezomib-induced muscle toxicity in multiple Myeloma. J. Neuropathol. Exp. Neurol. 76 620–630. 10.1093/jnen/nlx043
    1. Gupta A., Gupta Y. (2013). Glucocorticoid-induced myopathy: pathophysiology, diagnosis, and treatment. Indian J. Endocrinol. Metab. 17 913–916. 10.4103/2230-8210.117215
    1. Hung Y. C., Bauer J., Horsley P., Waterhouse M., Bashford J., Isenring E. (2013). Changes in nutritional status, body composition, quality of life, and physical activity levels of cancer patients undergoing autologous peripheral blood stem cell transplantation. Support Care Cancer 21 1579–1586. 10.1007/s00520-012-1698-y
    1. Inaba H., Yang J., Kaste S. C., Hartford C. M., Motosue M. S., Chemaitilly W., et al. (2012). Longitudinal changes in body mass and composition in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 30 3991–3997. 10.1200/jco.2011.40.0457
    1. Johnsen A. T., Tholstrup D., Petersen M. A., Pedersen L., Groenvold M. (2009). Health related quality of life in a nationally representative sample of haematological patients. Eur. J. Haematol. 83 139–148. 10.1111/j.1600-0609.2009.01250.x
    1. Jones C. J., Rikli R. E., Beam W. C. (1999). A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 70 113–119. 10.1080/02701367.1999.10608028
    1. Karnofsky D. A., Burchenal J. H. (1949). “The clinical evaluation of chemotherapeutic agents in cancer,” in Evaluation of Chemotherapeutic Agents ed. MacLeod C. M. (New York, NY: Columbia University Press; ) 191–205.
    1. Kemmler W., Bebenek M., Engelke K., von Stengel S. (2014). Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: the training and electrostimulation Trial (TEST-III). Age 36 395–406. 10.1007/s11357-013-9575-2
    1. Kemmler W., Weissenfels A., Teschler M., Willert S., Bebenek M., Shojaa M., et al. (2017). Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study. Clin. Interv. Aging 12 1503–1513. 10.2147/cia.s137987
    1. Kondrup J., Rasmussen H. H., Hamberg O., Stanga Z. (2003). Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin. Nutr. 22 321–336. 10.1016/S0261-5614(02)00214-5
    1. Kuliszkiewicz-Janus M., Malecki R., Mohamed A. S. (2008). Lipid changes occuring in the course of hematological cancers. Cell. Mol. Biol. Lett. 13 465–474. 10.2478/s11658-008-0014-9
    1. Lai J. S., Cella D., Chang C. H., Bode R. K., Heinemann A. W. (2003). Item banking to improve, shorten and computerize self-reported fatigue: an illustration of steps to create a core item bank from the FACIT-Fatigue Scale. Qual. Life Res. 12 485–501. 10.1023/A:1025014509626
    1. Lanic H., Kraut-Tauzia J., Modzelewski R., Clatot F., Mareschal S., Picquenot J. M., et al. (2014). Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk. Lymphoma 55 817–823. 10.3109/10428194.2013.816421
    1. Lee J., Dodd M. J., Dibble S. L., Abrams D. I. (2008). Nausea at the end of adjuvant cancer treatment in relation to exercise during treatment in patients with breast cancer. Oncol. Nurs. Forum 35 830–835. 10.1188/08.onf.830-835
    1. Lee S. Y., Lee Y. J., Yang J. H., Kim C. M., Choi W. S. (2014). The association between phase angle of bioelectrical impedance analysis and survival time in advanced cancer patients: preliminary study. Korean J. Fam. Med. 35 251–256. 10.4082/kjfm.2014.35.5.251
    1. Lin K. T., Wang L. H. (2016). New dimension of glucocorticoids in cancer treatment. Steroids 111 84–88. 10.1016/j.steroids.2016.02.019
    1. Liu P., Wang B., Yan X., Cai J., Wang Y. (2016). Comprehensive evaluation of nutritional status before and after hematopoietic stem cell transplantation in 170 patients with hematological diseases. Chin. J. Cancer Res. 28 626–633. 10.21147/j.issn.1000-9604.2016.06.09
    1. Liu R. D., Chinapaw M. J., Huijgens P. C., van Mechelen W. (2009). Physical exercise interventions in haematological cancer patients, feasible to conduct but effectiveness to be established: a systematic literature review. Cancer Treat. Rev. 35 185–192. 10.1016/j.ctrv.2008.09.008
    1. Macedo A. G., Krug A. L., Souza L. M., Martuscelli A. M., Constantino P. B., Zago A. S., et al. (2016). Time-course changes of catabolic proteins following muscle atrophy induced by dexamethasone. Steroids 107 30–36. 10.1016/j.steroids.2015.12.016
    1. Madzima T. A., Ormsbee M. J., Schleicher E. A., Moffatt R. J., Panton L. B. (2017). Effects of resistance training and protein supplementation in breast cancer survivors. Med. Sci. Sports Exerc. 49 1283–1292. 10.1249/mss.0000000000001250
    1. Mello M., Tanaka C., Dulley F. L. (2003). Effects of an exercise program on muscle performance in patients undergoing allogeneic bone marrow transplantation. Bone Marrow Transplant. 32 723–728. 10.1038/sj.bmt.1704227
    1. Miltenyi Z., Magyari F., Simon Z., Illes A. (2010). Quality of life and fatigue in Hodgkin’s lymphoma patients. Tumori 96 594–600. 10.1177/030089161009600413
    1. Morishita S., Kaida K., Ikegame K., Yoshihara S., Taniguchi K., Okada M., et al. (2012a). Impaired physiological function and health-related QOL in patients before hematopoietic stem-cell transplantation. Support Care Cancer 20 821–829. 10.1007/s00520-011-1156-2
    1. Morishita S., Kaida K., Tanaka T., Itani Y., Ikegame K., Okada M., et al. (2012b). Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support Care Cancer 20 3161–3168. 10.1007/s00520-012-1460-5
    1. Mosher C. E., Redd W. H., Rini C. M., Burkhalter J. E., DuHamel K. N. (2009). Physical, psychological, and social sequelae following hematopoietic stem cell transplantation: a review of the literature. Psychooncology 18 113–127. 10.1002/pon.1399
    1. Naik P. P., Ghadge M. S., Raste A. S. (2006). Lipid profile in leukemia and Hodgkin’s disease. Indian J. Clin. Biochem. 21 100–102. 10.1007/bf02912921
    1. Nanayakkara G., Kariharan T., Wang L., Zhong J., Amin R. (2012). The cardio-protective signaling and mechanisms of adiponectin. Am. J. Cardiovasc. Dis. 2 253–266.
    1. Oldervoll L. M., Kaasa S., Knobel H., Loge J. H. (2003). Exercise reduces fatigue in chronic fatigued Hodgkins disease survivors–results from a pilot study. Eur. J. Cancer 39 57–63. 10.1016/S0959-8049(02)00483-5
    1. Oldervoll L. M., Loge J. H., Lydersen S., Paltiel H., Asp M. B., Nygaard U. V., et al. (2011). Physical exercise for cancer patients with advanced disease: a randomized controlled trial. Oncologist 16 1649–1657. 10.1634/theoncologist.2011-0133
    1. Orgel E., Mueske N. M., Sposto R., Gilsanz V., Freyer D. R., Mittelman S. D. (2016). Limitations of body mass index to assess body composition due to sarcopenic obesity during leukemia therapy. Leuk. Lymphoma 59 138–145. 10.3109/10428194.2015.1136741
    1. Othus M., Kantarjian H., Petersdorf S., Ravandi F., Godwin J., Cortes J., et al. (2014). Declining rates of treatment-related mortality in patients with newly diagnosed AML given ’intense’ induction regimens: a report from SWOG and MD Anderson. Leukemia 28 289–292. 10.1038/leu.2013.176
    1. Passos G. S., Poyares D. L., Santana M. G., Tufik S., Mello M. T. (2012). Is exercise an alternative treatment for chronic insomnia? Clinics 67 653–660.
    1. Peckett A. J., Wright D. C., Riddell M. C. (2011). The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60 1500–1510. 10.1016/j.metabol.2011.06.012
    1. Persoon S., Chin A. M. J. M., Buffart L. M., Liu R. D. K., Wijermans P., Koene H. R., et al. (2017a). Randomized controlled trial on the effects of a supervised high intensity exercise program in patients with a hematologic malignancy treated with autologous stem cell transplantation: results from the EXIST study. PLoS One 12:e0181313. 10.1371/journal.pone.0181313
    1. Persoon S., Kersten M. J., Buffart L. M., Vander Slagmolen G., Baars J. W., Visser O., et al. (2017b). Health-related physical fitness in patients with multiple myeloma or lymphoma recently treated with autologous stem cell transplantation. J. Sci. Med. Sport 20 116–122. 10.1016/j.jsams.2016.01.006
    1. Peters S. A., Bots M. L., den Ruijter H. M., Palmer M. K., Grobbee D. E., Crouse J. R., et al. (2012). Multiple imputation of missing repeated outcome measurements did not add to linear mixed-effects models. J. Clin. Epidemiol. 65 686–695. 10.1016/j.jclinepi.2011.11.012
    1. Robert-Koch-Institut (2016). Bericht zum Krebsgeschehen in Deutschland 2016. Berlin: Zentrum für Krebsregisterdaten im Robert Koch-Institut.
    1. Schink K., Herrmann H. J., Schwappacher R., Meyer J., Orlemann T., Waldmann E., et al. (2018). Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: a controlled pilot trial. BMC Cancer 18:886. 10.1186/s12885-018-4790-y
    1. Schmidt K., Vogt L., Thiel C., Jager E., Banzer W. (2013). Validity of the six-minute walk test in cancer patients. Int. J. Sports Med. 34 631–636. 10.1055/s-0032-1323746
    1. Schoenfeld B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 24 2857–2872. 10.1519/JSC.0b013e3181e840f3
    1. Takekiyo T., Dozono K., Mitsuishi T., Murayama Y., Maeda A., Nakano N., et al. (2015). Effect of exercise therapy on muscle mass and physical functioning in patients undergoing allogeneic hematopoietic stem cell transplantation. Support Care Cancer 23 985–992. 10.1007/s00520-014-2425-7
    1. Tieland M., Dirks M. L., van der Zwaluw N., Verdijk L. B., van de Rest O., de Groot L. C., et al. (2012). Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 13 713–719. 10.1016/j.jamda.2012.05.020
    1. Tuchman S. A., Lane A., Hornsby W. E., Bishop C., Thomas S., Herndon J. E., et al. (2015). Quantitative measures of physical functioning after autologous hematopoietic stem cell transplantation in multiple myeloma: a feasibility study. Clin. Lymphoma Myeloma Leuk. 15 103–109. 10.1016/j.clml.2014.09.002
    1. West B. T. (2009). Analyzing longitudinal data with the linear mixed models procedure in SPSS. Eval. Health Prof. 32 207–228. 10.1177/0163278709338554
    1. Willoughby D. S., Stout J. R., Wilborn C. D. (2007). Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 32 467–477. 10.1007/s00726-006-0398-7
    1. Wiskemann J., Kuehl R., Dreger P., Schwerdtfeger R., Huber G., Ulrich C. M., et al. (2014). Efficacy of exercise training in SCT patients–who benefits most? Bone Marrow Transplant. 49 443–448. 10.1038/bmt.2013.194
    1. World Health Organization [WHO] (2000). Obesity: Preventing and Managing the Global Epidemic. WHO Technical Report Series 894 Geneva: World Health Organization.
    1. Xiao D. Y., Luo S., O’Brian K., Sanfilippo K. M., Ganti A., Riedell P., et al. (2016). Longitudinal body composition changes in diffuse large B-cell lymphoma survivors: a retrospective cohort study of United States veterans. J. Natl. Cancer Inst. 108:djw145. 10.1093/jnci/djw145
    1. Yip C., Dinkel C., Mahajan A., Siddique M., Cook G. J., Goh V. (2015). Imaging body composition in cancer patients: visceral obesity, sarcopenia, and sarcopenic obesity may impact on clinical outcome. Insights Imaging 6 489–497. 10.1007/s13244-015-0414-0

Source: PubMed

3
구독하다