Stem Cells as Potential Candidates for Psoriasis Cell-Replacement Therapy

Agnieszka Owczarczyk-Saczonek, Magdalena Krajewska-Włodarczyk, Anna Kruszewska, Waldemar Placek, Wojciech Maksymowicz, Joanna Wojtkiewicz, Agnieszka Owczarczyk-Saczonek, Magdalena Krajewska-Włodarczyk, Anna Kruszewska, Waldemar Placek, Wojciech Maksymowicz, Joanna Wojtkiewicz

Abstract

Recent years have seen considerable progress in explaining the mechanisms of the pathogenesis of psoriasis, with a significant role played in it by the hyper-reactivity of Th1 and Th17 cells, Treg function disorder, as well as complex relationships between immune cells, keratinocytes, and vascular endothelium. The effect of stem cells in the epidermis and stem cells on T cells has been identified and the dysfunction of various types of stem cells may be a prime cause of dysregulation of the inflammatory response in psoriasis. However, exploring these mechanisms in detail could provide a chance to develop new therapeutic strategies. In this paper, the authors reviewed data on the role played by stem cells in the pathogenesis of psoriasis and initial attempts at using them in treatment.

Keywords: mesenchymal stem cells; psoriasis; umbilical cord-Wharton’s Jelly stem cells.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Dysregulation of the inflammatory response in psoriasis.
Figure 2
Figure 2
Regeneration of epidermis and the role of transit-amplifying cells.

References

    1. Danielsen K., Olsen A.O., Wilsgaard T., Furberg A.S. Is the prevalence of psoriasis increasing? A 30-year follow-up of a population-based cohort. Br. J. Dermatol. 2013;168:1303–1310. doi: 10.1111/bjd.12230.
    1. Parisi R., Symmons D.P., Griffiths C.E., Ashcroft D.M. Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J. Investig. Dermatol. 2013;133:377–385. doi: 10.1038/jid.2012.339.
    1. Singh S., Young P., Armstrong A.W. An update on psoriasis and metabolic syndrome: A meta-analysis of observational studies. PLoS ONE. 2017;12:e0181039. doi: 10.1371/journal.pone.0181039.
    1. Singh S., Taylor C., Kornmehl H., Armstrong A.W. Psoriasis and suicidality: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2017;77:425–440. doi: 10.1016/j.jaad.2017.05.019.
    1. Randa H., Todberg T., Skov L., Larsen L.S., Zachariae R. Health-related Quality of Life in Children and Adolescents with Psoriasis: A Systematic Review and Meta-analysis. Acta Derm. Venereol. 2017;97:555–563. doi: 10.2340/00015555-2600.
    1. Belinchón I., Rivera R., Blanch C., Comellas M., Lizán L. Adherence, satisfaction and preferences for treatment in patients with psoriasis in the European Union: A systematic review of the literature. Patient Preference Adherence. 2016;10:2357–2367. doi: 10.2147/PPA.S117006.
    1. Deng Y., Chang C., Lu Q. The inflammatory response in psoriasis: A comprehensive review. Clin. Rev. Allergy Immunol. 2016;50:377–389. doi: 10.1007/s12016-016-8535-x.
    1. Martin D.A., Towne J.E., Kricorian G., Klekotka P., Gudjonsson J.E., Krueger J.E., Russel C.B. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J. Investig. Dermatol. 2013;133:17–26. doi: 10.1038/jid.2012.194.
    1. Jia H.Y., Shi Y., Luo L.F., Jiang G., Zhou Q., Xu S.Z., Lei T.C. Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. Int. J. Mol. Med. 2016;37:359–368. doi: 10.3892/ijmm.2015.2445.
    1. Franssen M.E., Zeeuwen P.L., Vierwinden G., van de Kerkhof P.C., Schalkwijk J., van Erp P.E. Phenotypical and functional differences in germinative subpopulations derived from normal and psoriatic epidermis. J. Investig. Dermatol. 2005;124:373–383. doi: 10.1111/j.0022-202X.2004.23612.x.
    1. Joachimiak R., Bajek A., Drewa T. Hair follicle as a novel source of stem cells. Postepy Hig. Med. Dosw. 2012;66:181–186. doi: 10.5604/17322693.991445.
    1. Ma D.R., Yang E.N., Lee S.T. A review: The location, molecular characterisation and multipotency of hair follicle epidermal stem cells. Ann. Acad. Med. Singap. 2004;33:784–788.
    1. O’Shaughnessy R.F., Seery J.P., Celis J.E., Frischauf A., Watt F.M. PA-FABP, a novel marker of human epidermal transit amplifying cells revealed by 2D protein gel electrophoresis and cDNA array hybridisation. FEBS Lett. 2000;486:149–154. doi: 10.1016/S0014-5793(00)02252-3.
    1. Jones P., Simons B.D. Epidermal homeostasis: Do committed progenitors work while stem cells sleep? Nat. Rev. Mol. Cell Biol. 2008;9:82–88. doi: 10.1038/nrm2292.
    1. Watarai A., Amoh Y., Maejima H., Hamada Y., Katsuoka K. Nestin expression is increased in the suprabasal epidermal layer in psoriasis vulgaris. Acta Derm. Venereol. 2013;93:39–43. doi: 10.2340/00015555-1420.
    1. Charruyer A., Fong S., Vitcov G.G., Sklar S., Tabernik L., Taneja M., Caputo M., Soeung C., Yue L., Uchida Y., et al. Brief report: Interleukin-17A-dependent asymmetric stem cell divisions are increased in human psoriasis: A mechanism underlying benign hyperproliferation. Stem Cells. 2017;35:2001–2007. doi: 10.1002/stem.2656.
    1. Furuhashi T., Saito C., Torii K., Nishida E., Yamazaki S., Morita A. Photo(chemo)therapy reduces circulating Th17 cells and restores circulating regulatory T cells in psoriasis. PLoS ONE. 2013;8:e54895. doi: 10.1371/journal.pone.0054895.
    1. Li B., Reynolds J.M., Stout R.D., Bernlohr D.A., Suttles J. Regulation of Th17 differentiation by epidermal fatty acid-binding protein. J. Immunol. 2009;182:7625–7633. doi: 10.4049/jimmunol.0804192.
    1. Reynolds J.M., Liu Q., Brittingham K.C., Liu Y., Gruenthal M., Gorgun C.Z., Liu Y., Gruenthal M., Gorgun C.Z., Hotamisligil G.S., et al. Deficiency of fatty acid-binding proteins in mice confers protection from development of experimental autoimmune encephalomyelitis. J. Immunol. 2007;179:313–321. doi: 10.4049/jimmunol.179.1.313.
    1. Gutiérrez-González L.H., Ludwig C., Hohoff C., Rademacher M., Hanhoff T., Rüterjans H., Spener F., Lücke C. Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP) Biochem. J. 2002;15:725–737. doi: 10.1042/bj20020039.
    1. Yamamoto T., Katayama I., Nishioka K. Possible contribution of stem cell factor in psoriasis vulgaris. J. Dermatol. Sci. 2000;24:171–176. doi: 10.1016/S0923-1811(00)00095-5.
    1. Liu R.F., Wang F., Wang Q., Zhao X.C., Zhang K.M. Research note mesenchymal stem cells from skin lesions of psoriasis patients promote proliferation and inhibit apoptosis of HaCaT cells. Genet. Mol. Res. 2015;14:17758–17767. doi: 10.4238/2015.December.21.49.
    1. Orciani M., Campanati A., Salvolini E., Lucarini G., Di Benedetto G., Offidani A., Di Primio R. The mesenchymal stem cell profile in psoriasis. Br. J. Dermatol. 2011;165:585–592. doi: 10.1111/j.1365-2133.2011.10438.x.
    1. Campanati A., Orciani M., Consales V., Lazzarini R., Ganzetti G., Di Benedetto G., Di Primio R., Offidani A. Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Arch. Dermatol. Res. 2014;306:915–920. doi: 10.1007/s00403-014-1493-3.
    1. Hou R., Yan H., Niu X., Chang W., An P., Wang C., Yang Y., Yan X., Li J., Liu R., et al. Gene expression profile of dermal mesenchymal stem cells from patients with psoriasis. J. Eur. Acad. Dermatol. Venereol. 2014;28:1782–1791. doi: 10.1111/jdv.12420.
    1. Hou R.X., Liu R.F., Zhao X.C., Jia Y.R., An P., Hao Z.P., Li J.Q., Li X.H., Yin G.H., Zhang K.M. Increased miR-155-5p expression in dermal mesenchymal stem cells of psoriatic patients: Comparing the microRNA expression profile by microarray. Genet. Mol. Res. 2016;15 doi: 10.4238/gmr.15038631.
    1. Xu C., Ren G., Cao G., Chen Q., Zheng C., Du L., Han X., Jiang M., Yang Q., Lin L., et al. miR-155 Regulates immune modulatory properties of mesenchymal stem cells by targeting TAK1-binding protein 2. J. Biol. Chem. 2013;288:11074–11079. doi: 10.1074/jbc.M112.414862.
    1. Lu C., Huang X., Zhang X., Roensch K., Cao Q., Nakayama K.I., Blazar B.R., Zeng Y., Zhou X. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood. 2011;16:4293–4303. doi: 10.1182/blood-2010-12-322503.
    1. Tili E., Michaille J.J., Wernicke D., Alder H., Costinean S., Volinia S., Croce C.M. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc. Natl. Acad. Sci. USA. 2011;108:4908–4913. doi: 10.1073/pnas.1101795108.
    1. Trotta R., Chen L., Ciarlariello D., Josyula S., Mao C., Costinean S., Yu L., Butchar J.P., Tridandapani S., Croce C.M., et al. miR-155 regulates IFN-g production in natural killer cells. Blood. 2012;15:3478–3485. doi: 10.1182/blood-2011-12-398099.
    1. English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol. Cell Biol. 2013;91:19–26. doi: 10.1038/icb.2012.56.
    1. Hou R., Li J., Niu X., Liu R., Chang W., Zhao X., Wang Q., Li X., Yin G., Zhang K. Stem cells in psoriasis. J. Dermatol. Sci. 2017;86:181–186. doi: 10.1016/j.jdermsci.2016.11.006.
    1. Liu R., Wang Y., Zhao X., Yang Y., Zhang K. Lymphocyte inhibition is compromised in mesenchymal stem cells from psoriatic skin. Eur. J. Dermatol. 2014;24:560–567.
    1. Sah S.K., Park K.H., Yun C.O., Kang K.S., Kim T.Y. Effects of human mesenchymal stem cells transduced with superoxide dismutase on imiquimod-induced psoriasis-like skin inflammation in mice. Antioxid. Redox Signal. 2016;24:233–248. doi: 10.1089/ars.2015.6368.
    1. Henno A., Blacher S., Lambert C., Colige A., Seidel L., Noël A., Lapière C., de la Brassinne M., Nusgens B.V. Altered expression of angiogenesis and lymphangiogenesis markers in the uninvolved skin of plaque-type psoriasis. Br. J. Dermatol. 2009;160:581–590. doi: 10.1111/j.1365-2133.2008.08889.x.
    1. Hou R., Liu R., Niu X., Chang W., Yan X., Wang C., Li J., An P., Li X., Yin G., et al. Biological characteristics and gene expression pattern of bone marrow mesenchymal stem cells in patients with psoriasis. Exp. Dermatol. 2014;23:521–523. doi: 10.1111/exd.12446.
    1. Niu X., Chang W., Liu R., Hou R., Li J., Wang C., Li X., Zhang K. Expression of pro-angiogenic genes in mesenchymal stem cells derived from dermis of patients with psoriasis. Int. J. Dermatol. 2016;55:e280–e288. doi: 10.1111/ijd.13197.
    1. Ceafalan L., Gherghiceanu M., Popescu L.M., Simionescu O. Telocytes in human skin-are they involved in skin regeneration? J. Cell. Mol. Med. 2012;16:1405–1420. doi: 10.1111/j.1582-4934.2012.01580.x.
    1. Manole C.G., Gherghiceanu M., Simionescu O. Telocyte dynamics in psoriasis. J. Cell. Mol. Med. 2015;19:1504–1519. doi: 10.1111/jcmm.12601.
    1. Zhang K., Li X., Yin G., Liu Y., Niu X., Hou R. Functional characterization of CD4+CD25+ regulatory T cells differentiated in vitro from bone marrow-derived haematopoietic cells of psoriasis patients with a family history of the disorder. Br. J. Dermatol. 2008;158:298–305. doi: 10.1111/j.1365-2133.2007.08359.x.
    1. Adkins D.R., Abidi M.H., Brown R.A., Khoury H., Goodnough L.T., Vij R., Westervelt P., DiPersio J.F. Resolution of psoriasis after allogeneic bone marrow transplantation for chronic myelogenous leukemia: Late complications of therapy. Bone Marrow Transplant. 2000;26:1239–1241. doi: 10.1038/sj.bmt.1702703.
    1. Li X., Li J., Wang L., Niu X., Hou R., Liu R., Hao Z., Wang C., Yin G., Zhang K. Transmission of psoriasis by allogeneic bone marrow transplantation and blood transfusion. Blood Cancer J. 2015;13:e288. doi: 10.1038/bcj.2015.15.
    1. Woods A.C., Mant M.J. Amelioration of severe psoriasis with psoriatic arthritis for 20 years after allogeneic haematopoietic stem cell transplantation. Ann. Rheum. Dis. 2006;65:697. doi: 10.1136/ard.2005.039479.
    1. Zhang K., Hou R., Niu X., Zhang J., Yin G., Li X., Jia Y. Decreased colony formation of high proliferative potential colony-forming cells and granulocyte-macrophage colony-forming units and increased Hes-1 expression in bone marrow mononuclear cells from patients with psoriasis. Br. J. Dermatol. 2010;163:93–101. doi: 10.1111/j.1365-2133.2010.09790.x.
    1. Ablin J.N., Goldstein Z., Aloush V., Matz H., Elkayam O., Caspi D., Swartzenberg S., George J., Wohl Y. Normal levels and function of endothelial progenitor cells in patients with psoriatic arthritis. Rheumatol. Int. 2009;29:257–262. doi: 10.1007/s00296-008-0676-7.
    1. Batycka-Baran A., Paprocka M., Krawczenko A., Kantor A., Duś D., Szepietowski J.C. Reduced number of circulating endothelial progenitor cells (CD133+/KDR+) in patients with plaque psoriasis. Dermatology. 2012;22:88–92. doi: 10.1159/000341534.
    1. Głowińska-Olszewska B., Łuczyński W., Bossowski A. Endothelial progenitor cells as a new marker of endothelial function with respect to risk of cardiovascular disorders. Postepy Hig. Med. Dosw. 2011;65:8–15. doi: 10.5604/17322693.931086.
    1. Hayek S.S., Neuman R., Kavtaradze N., Sher S., Jones D., Li Q., Zhao L., Chen S.C., Waller E., Quyyumi A. Tumor necrosis factor-alpha antagonism with etanercept improves endothelial progenitor cell counts in patients with psoriasis: Etanercept, vascular function and endothelial progenitor cells in psoriasis. Int. J. Cardiol. 2015;182:387–389. doi: 10.1016/j.ijcard.2014.12.093.
    1. Hristov M., Erl W., Weber P.C. Endothelial progenitor cells: Mobilization, differentiation, and homing. Arterioscler. Thromb. Vasc. Biol. 2003;23:1185–1189. doi: 10.1161/01.ATV.0000073832.49290.B5.
    1. Zurita G., Geffner L., Maldonado B., Uraga E., Armijos L. Autologous Stem Cells Implants in Psoriasis. [(accessed on 20 September 2017)]; Available online: .
    1. Kaffenberger B.H., Wong H.K., Jarjour W., Andritsos L.A. Remission of psoriasis after allogeneic, but not autologous, hematopoietic stem-cell transplantation. J. Am. Acad. Dermatol. 2013;68:489–492. doi: 10.1016/j.jaad.2012.08.021.
    1. Al-Robaee A.A., Al-Zolibani A.A., Al-Shobili H.A., Kazamel A., Settin A. IL-10 implications in psoriasis. Int. J. Health Sci. Qassim. 2008;2:53–58.
    1. Flisiak I., Zaniewski P., Chodynicka B. Plasma TGF-beta1, TIMP-1, MMP-1 and IL-18 as a combined biomarker of psoriasis activity. Biomarkers. 2008;13:549–556. doi: 10.1080/13547500802033300.
    1. Zaher H., Shaker O.G., EL-Komy M.H., El-Tawdi A., Fawzi M., Kadry D. Serum and tissue expression of transforming growth factor beta 1 in psoriasis. J. Eur. Acad. Dermatol. Venereol. 2009;23:406–409. doi: 10.1111/j.1468-3083.2008.03064.x.
    1. Chen H., Niu J.W., Ning H.M., Li X.B., Li Y., Wang D.H., Hu L.D., Sheng H.X., Xu M., Zhang L., et al. Treatment of psoriasis with Mesenchymal Stem Cells. Am. J. Med. 2016;29:13–14. doi: 10.1016/j.amjmed.2015.11.001.
    1. Kim D.W., Staples M., Shinozuka K., Pantcheva P., Kang S.D., Borlongan C.V. Wharton’s jelly-derived mesenchymal stem cells: Phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int. J. Mol. Sci. 2013;14:11692–11712. doi: 10.3390/ijms140611692.
    1. Prasanna S.J., Gopalakrishnan D., Shankar S.R., Vasandan A.B. Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS ONE. 2010;5:e9016. doi: 10.1371/journal.pone.0009016.
    1. Wang Q., Yang Q., Wang Z., Tong H., Ma L., Zhang Y., Shan F., Meng Y., Yuan Z. Comparative analysis of human mesenchymal stem cells from fetal-bone marrow, adipose tissue, and Warton’s jelly as sources of cell immunomodulatory therapy. Hum. Vaccin. Immunother. 2016;12:85–96. doi: 10.1080/21645515.2015.1030549.
    1. Wang X.Y., Chen X.Y., Li J., Zhang H.Y., Liu J., Sun L.D. MiR-200a expression in CD4+ T cells correlates with the expression of Th17/Treg cells and relevant cytokines in psoriasis vulgaris: A case control study. Biomed. Pharmacother. 2017;93:1158–1164. doi: 10.1016/j.biopha.2017.06.055.
    1. Zhang L., Yang X.Q., Cheng J., Hui R.S., Gao T.W. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin. Immunol. 2010;135:108–117. doi: 10.1016/j.clim.2009.11.008.
    1. Amari A., Ebtekar M., Moazzeni S.M., Soleimani M., Mohammadi-Amirabad L., Tahoori M.T., Massumi M. In vitro generation of IL-35-expressing Human Wharton’s Jelly-derived Mesenchymal Stem Cells using lentiviral vector. Iran. J. Allergy Asthma Immunol. 2015;14:416–426.
    1. Aractingi S., Briand N., Le Danff C., Viguier M., Bachelez H., Michel L., Dubertret R., Carosella E.D. HLA-G and NK receptors are expressed in psoriatic skin: A possible pathway for regulating infiltrating T cells? Am. J. Pathol. 2001;159:71–77. doi: 10.1016/S0002-9440(10)61675-6.
    1. Borghi A., Fogli E., Stignani M., Melchiorri L., Altieri E., Baricordi O., Rizzo R., Virgili A. Soluble human leukocyte antigen-G and interleukin-10 levels in plasma of psoriatic patients: Preliminary study on a possible correlation between generalized immune status, treatments and disease. Arch. Dermatol. Res. 2008;300:551–559. doi: 10.1007/s00403-008-0886-6.
    1. Fong C.Y., Chak L.L., Biswas A., Tan J.H., Gauthaman K., Chan W.K., Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011;7:1–16. doi: 10.1007/s12015-010-9166-x.
    1. La Rocca G., Anzalone R., Corrao S., Magno F., Loria T., Lo Iacono M., Di Stefano A., Giannuzzi P., Marasà L., Cappello F., et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: Differentiation potential and detection of new markers. Histochem. Cell Biol. 2009;131:267–282. doi: 10.1007/s00418-008-0519-3.
    1. Keijsers R.R., van der Velden H.M., van Erp P.E., de Boer-van Huizen R.T., Joosten I., Koenen H.J., van de Kerkhof P.C. Balance of Treg vs. T-helper cells in the transition from symptomless to lesional psoriatic skin. Br. J. Dermatol. 2013;168:1294–1302. doi: 10.1111/bjd.12236.
    1. Owczarczyk-Saczonek A., Placek W. Interleukin-17 as a factor linking the pathogenesis of psoriasis with metabolic disorders. Int. J. Dermatol. 2017;56:260–268. doi: 10.1111/ijd.13420.
    1. Rafei M., Campeau P.M., Aguilar-Mahecha A., Buchanan M., Williams P., Birman E., Yuan S., Young Y.K., Boivin M.N., Forner K., et al. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Thl7 T cells in a CC chemokine ligand 2-dependent manner. Immunology. 2009;182:5994–6002. doi: 10.4049/jimmunol.0803962.
    1. Bovenschen H.J., van de Kerkhof P.C., van Erp P.E., Woestenenk R., Joosten I., Koenen H.J. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Investig. Dermatol. 2011;131:1853–1860. doi: 10.1038/jid.2011.139.
    1. Alunno A., Montanucci P., Bistoni O., Basta G., Caterbi S., Pescara T., Pennoni I., Bini V., Bartoloni E., Gerli R., et al. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjögren’s syndrome. Rheumatol. Oxf. 2015;54:163–168. doi: 10.1093/rheumatology/keu292.
    1. Karamehic J., Zecevic L., Resic H., Jukic M., Jukic T., Ridjic O., Panjeta M., Coric J. Immunophenotype lymphocyte of peripheral blood in patients with psoriasis. Med. Arch. 2014;68:236–238. doi: 10.5455/medarh.2014.68.236-238.
    1. Khasawneh A., Baráth S., Medgyesi B., Béke G., Dajnoki Z., Gáspár K., Jenei A., Pogácsás L., Pázmándi K., Gaál J., et al. Myeloid but not plasmacytoid blood DCs possess Th1 polarizing and Th1/Th17 recruiting capacity in psoriasis. Immunol. Lett. 2017;189:109–113. doi: 10.1016/j.imlet.2017.04.005.
    1. Kastelan M., Prpić-Massari L., Brajac I. Apoptosis in psoriasis. Acta Dermatovenerol. Croat. 2009;17:182–186.
    1. Han I., Yun M., Kim E.O., Kim B., Jung M.H., Kim S.H. Umbilical cord tissue-derived mesenchymal stem cells induce apoptosis in PC-3 prostate cancer cells through activation of JNK and downregulation of PI3K/AKT signaling. Stem Cell Res. Ther. 2014;5:54. doi: 10.1186/scrt443.
    1. Mori J., Kakihana K., Ohashi K. Sustained remission of psoriasis vulgaris after allogeneic bone marrow transplantation. Br. J. Haematol. 2012;159:121. doi: 10.1111/bjh.12026.
    1. Braiteh F., Hymes S.R., Giralt S.A., Jones R. Complete remission of psoriasis after autologous hematopoietic stem-cell transplantation for multiple myeloma. J. Clin. Oncol. 2008;26:4511–4513. doi: 10.1200/JCO.2008.17.6560.
    1. Damien P., Allan D.S. Regenerative therapy and immune modulation using Umbilical Cord Blood-Derived Cells. Biol. Blood Marrow Transplant. 2015;21:1545–1554. doi: 10.1016/j.bbmt.2015.05.022.
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905.
    1. Chamberlain G., Fox J., Ashton B., Middleton J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–2749. doi: 10.1634/stemcells.2007-0197.
    1. Batsali A.K., Kastrinaki M.C., Papadaki H.A., Pontikoglou C. Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: Biological properties and emerging clinical applications. Curr. Stem Cell Res. Ther. 2013;8:144–155. doi: 10.2174/1574888X11308020005.
    1. Richardson S.M., Kalamegam G., Pushparaj P.N., Matta C., Memic A., Khademhosseini A., Mobasheri R., Poletti F.L., Hoyland J.A., Mobasheri A. Mesenchymal stem cells in regenerative medicine: Focus on articularcartilage and intervertebral disc regeneration. Methods. 2016;99:69–80. doi: 10.1016/j.ymeth.2015.09.015.
    1. Sabapathy V., Sundaram B., Mankuzhy P., Kumar S. Human Wharton’s Jelly Mesenchymal Stem Cells plasticity augments scar-free skin wound healing with hair growth. PLoS ONE. 2014;9:e93726. doi: 10.1371/journal.pone.0093726.
    1. Mohren M., Daikeler T., Benz D., Günaydin I., Kanz L., Kötter I. Myeloablative immunosuppressive treatment with autologous haematopoietic stem cell transplantation in a patient with psoriatic arthropathy and monoclonal gammopathy of undetermined significance. Ann. Rheum. Dis. 2004;63:466–467. doi: 10.1136/ard.2003.010702.
    1. Held K., Rahmetulla R., Loew T.W., Radhi M.A. Complete resolution of guttate psoriasis following autologous SCT for Ewing’s sarcoma in a pediatric patient. Bone Marrow Transplant. 2012;47:1585–1586. doi: 10.1038/bmt.2012.68.
    1. Kishimoto Y., Yamamoto Y., Ito T., Matsumoto N., Ichiyoshi H., Katsurada T., Date M., Ohga S., Kitajima H., Ikehara S., et al. Transfer of autoimmune thyroiditis and resolution of palmoplantar pustular psoriasis following allogeneic bone marrow transplantation. Bone Marrow Transplant. 1997;19:1041–1043. doi: 10.1038/sj.bmt.1700789.
    1. Rossi H.A., Becker P.S., Emmons R.V., Westervelt P., Levy W., Liu Q., Clark Y., Ballen K. High-dose cyclophosphamide, BCNU, and VP-16 (CBV) conditioning before allogeneic stem cell transplantation for patients with non-Hodgkin's lymphoma. Bone Marrow Transplant. 2003;31:441–446. doi: 10.1038/sj.bmt.1703874.
    1. Kanamori H., Tanaka M., Kawaguchi H., Yamaji S., Fujimaki K., Tomita N., Fujisawa S., Ishigatsubo J. Resolution of psoriasis following allogeneic bone marrow transplantation for chronic myelogenous leukemia: Case report and review of the literature. Am. J. Hematol. 2002;71:41–44. doi: 10.1002/ajh.10169.
    1. Slavin S., Nagler A., Varadi G., Or R. Graft vs autoimmunity following allogeneic non-myeloablative blood stem cell transplantation in a patient with chronic myelogenous leukemia and severe systemic psoriasis and psoriatic polyarthritis. Exp. Hematol. 2000;28:853–857. doi: 10.1016/S0301-472X(00)00172-7.
    1. Park M.J., Park H., Cho M.L., Oh H.J., Cho Y.G., Min S.Y., Chung B.H., Lee J.W., Kim H.Y., Cho S.G. Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Thl7 cells and osteoclastogenesis. Arthritis Rheum. 2011;63:1668–1680. doi: 10.1002/art.30326.
    1. Sharma M.D., Hou D.Y., Liu Y., Koni P., Metz R., Chandler P., Mellor A.L., He Y., Munn D.H. Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood. 2009;113:6102–6111. doi: 10.1182/blood-2008-12-195354.
    1. Rey Nores J.E., Bensussan A., Vita N., Stelter F., Arias M.A., Jones M., Lefort S., Borysiewicz L.K., Ferrara P., Labéta M.O. Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur. J. Immunol. 1999;29:265–276. doi: 10.1002/(SICI)1521-4141(199901)29:01<265::AID-IMMU265>;2-G.
    1. Kalaszczynska I., Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: Future of regenerative medicine? Recent findings and clinical significance. Biomed. Res. Int. 2015;2015:430847. doi: 10.1155/2015/430847.
    1. Wu S., Ju G.Q., Du T., Zhu Y.J., Liu G.H. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS ONE. 2013;8:e61366. doi: 10.1371/journal.pone.0061366.
    1. Gotherstrom C., Ringden O., Tammik C., Zetterberg E., Westgren M., Le Blanc K. Immunologic properties of human fetal mesenchymal stem cells. Am. J. Obstet. Gynecol. 2004;190:239–245. doi: 10.1016/j.ajog.2003.07.022.
    1. ClinicalTrials. [(accessed on 20 September 2017)]; Available online:

Source: PubMed

3
구독하다