Sepsis: From Pathophysiology to Individualized Patient Care

Ildikó László, Domonkos Trásy, Zsolt Molnár, János Fazakas, Ildikó László, Domonkos Trásy, Zsolt Molnár, János Fazakas

Abstract

Sepsis has become a major health economic issue, with more patients dying in hospitals due to sepsis related complications compared to breast and colorectal cancer together. Despite extensive research in order to improve outcome in sepsis over the last few decades, results of large multicenter studies were by-and-large very disappointing. This fiasco can be explained by several factors, but one of the most important reasons is the uncertain definition of sepsis resulting in very heterogeneous patient populations, and the lack of understanding of pathophysiology, which is mainly based on the imbalance in the host-immune response. However, this heroic research work has not been in vain. Putting the results of positive and negative studies into context, we can now approach sepsis in a different concept, which may lead us to new perspectives in diagnostics and treatment. While decision making based on conventional sepsis definitions can inevitably lead to false judgment due to the heterogeneity of patients, new concepts based on currently gained knowledge in immunology may help to tailor assessment and treatment of these patients to their actual needs. Summarizing where we stand at present and what the future may hold are the purpose of this review.

Figures

Figure 1
Figure 1
The “sepsis-triangles”: pathomechanism and treatment. SIRS: systemic inflammatory response syndrome, I-R: ischemia-reperfusion, DO2: oxygen delivery, VO2: oxygen consumption, PAMP: pathogen-associated molecular patterns, DAMP: damage-associated molecular patterns, EC: extra corporeal, and IPPV: intermittent positive pressure ventilation.
Figure 2
Figure 2
The main pillars of systemic inflammatory response. PAMPs: pathogen-associated molecular pattern, DAMPs: damage-associated molecular pattern molecules, MBL: mannose-binding lectin, NOD protein: nucleotide-binding oligomerization domain protein, and NALP: a type a NOD like receptors. For explanation, see text.
Figure 3
Figure 3
Procalcitonin response to consequent infectious insults. During regulated inflammatory response the two phenotypes of macrophages, (M) the proinflammatory (M1) and anti-inflammatory (M2), are balanced. As time goes by due to a dysregulated response patients become immunoparalyzed; in other words, M2 overwhelms M1; hence, forces are shifted towards “new balance.” This is reflected by lower PCT peak levels after each new infectious insult, which can be of the same gravity clinically. For further explanation see text.

References

    1. Vincent J.-L. We should abandon randomized controlled trials in the intensive care unit. Critical Care Medicine. 2010;38(10, supplement):S534–S538. doi: 10.1097/ccm.0b013e3181f208ac.
    1. Bone R. C., Fisher C. J., Jr., Clemmer T. P., Slotman G. J., Metz C. A., Balk R. A. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. The New England Journal of Medicine. 1987;317(11):653–658. doi: 10.1056/nejm198709103171101.
    1. Bone R. C., Fisher C. J., Jr., Clemmer T. P., Slotman G. J., Metz G. A., Balk R. A. Sepsis syndrome: a valid clinical entity. Methylprednisolone Severe Sepsis Study Group. Critical Care Medicine. 1989;17(5):389–393. doi: 10.1097/00003246-198905000-00002.
    1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine. 1992;20(6):864–874.
    1. Vincent J.-L., Opal S. M., Marshall J. C., Tracey K. J. Sepsis definitions: time for change. The Lancet. 2013;381(9868):774–775. doi: 10.1016/s0140-6736(12)61815-7.
    1. Dellinger R. P., Levy M. M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine. 2013;39(2):165–228. doi: 10.1007/s00134-012-2769-8.
    1. Kaukonen K.-M., Bailey M., Suzuki S., Pilcher D., Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. Journal of the American Medical Association. 2014;311(13):1308–1316. doi: 10.1001/jama.2014.2637.
    1. Gaieski D. F., Edwards J. M., Kallan M. J., Carr B. G. Benchmarking the incidence and mortality of severe sepsis in the united states. Critical Care Medicine. 2013;41(5):1167–1174. doi: 10.1097/ccm.0b013e31827c09f8.
    1. Torio C. M., Andrews R. M. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011: Statistical Brief #160. Rockville, Md, USA: Agency for Health Care Policy and Research; 2006–2013. (Healthcare Cost and Utilization Project (HCUP) Statistical Briefs).
    1. ProCESS Investigators, Yealy D. M., Kellum J. A., et al. A randomized trial of protocol-based care for early septic shock. The New England Journal of Medicine. 2014;370(18):1683–1693. doi: 10.1056/nejmoa1401602.
    1. Heublein S., Hartmann M., Hagel S., Hutagalung R., Brunkhorst F. M. Epidemiology of sepsis in German hospitals derived from administrative databases. Infection. 2013;17, article S71
    1. Engel C., Brunkhorst F. M., Bone H.-G., et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Medicine. 2007;33(4):606–618. doi: 10.1007/s00134-006-0517-7.
    1. Harder J., Schröder J.-M., Gläser R. The skin surface as antimicrobial barrier: present concepts and future outlooks. Experimental Dermatology. 2013;22(1):1–5. doi: 10.1111/exd.12046.
    1. Baroni A., Buommino E., De Gregorio V., Ruocco E., Ruocco V., Wolf R. Structure and function of the epidermis related to barrier properties. Clinics in Dermatology. 2012;30(3):257–262. doi: 10.1016/j.clindermatol.2011.08.007.
    1. Pelaseyed T., Bergström J. H., Gustafsson J. K., et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews. 2014;260(1):8–20. doi: 10.1111/imr.12182.
    1. Rudraraju R., Jones B. G., Surman S. L., Sealy R. E., Thomas P. G., Hurwitz J. L. Respiratory tract epithelial cells express retinaldehyde dehydrogenase ALDH1A and enhance IgA production by stimulated B cells in the presence of vitamin A. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0086554.e86554
    1. Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. The American Journal of Reproductive Immunology. 2014;71(6):575–588. doi: 10.1111/aji.12250.
    1. Kompoti M., Michopoulos A., Michalia M., Clouva-Molyvdas P. M., Germenis A. E., Speletas M. Genetic polymorphisms of innate and adaptive immunity as predictors of outcome in critically ill patients. Immunobiology. 2015;220(3):414–421. doi: 10.1016/j.imbio.2014.10.006.
    1. Strober W., Fuss I. J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1756–1767. doi: 10.1053/j.gastro.2011.02.016.
    1. Zhang Q., Raoof M., Chen Y., et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. doi: 10.1038/nature08780.
    1. Cavaillon J.-M., Adrie C., Fitting C., Adib-Conquy M. Reprogramming of circulatory cells in sepsis and SIRS. Journal of Endotoxin Research. 2005;11(5):311–320.
    1. Cavaillon J.-M., Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Critical Care. 2006;10(5, article 233) doi: 10.1186/cc5055.
    1. Kumar A., Roberts D., Wood K. E., et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Medicine. 2006;34(6):1589–1596. doi: 10.1097/01.ccm.0000217961.75225.e9.
    1. Fitting C., Parlato M., Adib-Conquy M., et al. DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients. PLoS ONE. 2012;7(6) doi: 10.1371/journal.pone.0038916.e38916
    1. Leli C., Cardaccia A., Ferranti M., et al. Procalcitonin better than C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in predicting DNAemia in patients with sepsis. Scandinavian Journal of Infectious Diseases. 2014;46(11):745–752. doi: 10.3109/00365548.2014.936493.
    1. Pletz M. W., Wellinghausen N., Welte T. Will polymerase chain reaction (PCR)-based diagnostics improve outcome in septic patients? A clinical view. Intensive Care Medicine. 2011;37(7):1069–1076. doi: 10.1007/s00134-011-2245-x.
    1. Michael M. Procalcitonin—Biochemistry and Clinical Diagnosis. 1st. UNI-MED Science; 2010.
    1. Simon L., Gauvin F., Amre D. K., Saint-Louis P., Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clinical Infectious Diseases. 2004;39(2):206–217. doi: 10.1086/421997.
    1. Tang B. M., Eslick G. D., Craig J. C., McLean A. S. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. The Lancet Infectious Diseases. 2007;7(3):210–217. doi: 10.1016/s1473-3099(07)70052-x.
    1. Brunkhorst F. M., Heinz U., Forycki Z. F. Kinetics of procalcitonin in iatrogenic sepsis. Intensive Care Medicine. 1998;24(8):888–889. doi: 10.1007/s001340050683.
    1. Meisner M., Lohs T., Huettemann E., Schmidt J., Hueller M., Reinhart K. The plasma elimination rate and urinary secretion of procalcitonin in patients with normal and impaired renal function. European Journal of Anaesthesiology. 2001;18(2):79–87. doi: 10.1046/j.0265-0215.2000.00783.x.
    1. Jensen J. U., Heslet L., Jensen T. H., Espersen K., Steffensen P., Tvede M. Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Critical Care Medicine. 2006;34(10):2596–2602. doi: 10.1097/01.ccm.0000239116.01855.61.
    1. Philpott D. J., Sorbara M. T., Robertson S. J., Croitoru K., Girardin S. E. NOD proteins: regulators of inflammation in health and disease. Nature Reviews Immunology. 2014;14(1):9–23. doi: 10.1038/nri3565.
    1. Öveges N., Trásy D., Németh M. F., et al. Increasing procalcitonin kinetics may be a good indicator of infection in critically ill patients. Intensive Care Medicine. 2014;40(supplement 1, article 0982)
    1. Marková M., Brodská H., Malíčková K., et al. Substantially elevated C-reactive protein (CRP), together with low levels of procalcitonin (PCT), contributes to diagnosis of fungal infection in immunocompromised patients. Supportive Care in Cancer. 2013;21(10):2733–2742. doi: 10.1007/s00520-013-1844-1.
    1. Sachse C., Machens H. G., Felmerer G., Berger A., Henkel E. Procalcitonin as a marker for the early diagnosis of severe infection after thermal injury. Journal of Burn Care and Rehabilitation. 1999;20(5):354–360. doi: 10.1097/00004630-199909000-00004.
    1. Brunkhorst F. M., Clark A. L., Forycki Z. F., Anker S. D. Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. International Journal of Cardiology. 1999;72(1):3–10. doi: 10.1016/s0167-5273(99)00118-7.
    1. Connert S., Stremmel W., Elsing C. Procalcitonin is a valid marker of infection in decompensated cirrhosis. Zeitschrift fur Gastroenterologie. 2003;41(2):165–170. doi: 10.1055/s-2003-37314.
    1. Müller B., Becker K. L., Schächinger H., et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Critical Care Medicine. 2000;28(4):977–983. doi: 10.1097/00003246-200004000-00011.
    1. Cao Z., Robinson R. A. S. The role of proteomics in understanding biological mechanisms of sepsis. Proteomics—Clinical Applications. 2014;8(1-2):35–52. doi: 10.1002/prca.201300101.
    1. Masson S., Caironi P., Fanizza C., et al. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Medicine. 2014;41(1):12–20. doi: 10.1007/s00134-014-3514-2.
    1. Donadello K., Scolletta S., Taccone F. S., et al. Soluble urokinase-type plasminogen activator receptor as a prognostic biomarker in critically ill patients. Journal of Critical Care. 2014;29(1):144–149. doi: 10.1016/j.jcrc.2013.08.005.
    1. Johansson P. I., Stensballe J., Rasmussen L. S., Ostrowski S. R. High circulating adrenaline levels at admission predict increased mortality after trauma. Journal of Trauma and Acute Care Surgery. 2012;72(2):428–436. doi: 10.1097/ta.0b013e31821e0f93.
    1. Adembri C., Sgambati E., Vitali L., et al. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat. Critical Care. 2011;15(6, article R277) doi: 10.1186/cc10559.
    1. De Backer D., Cortes D. O., Donadello K., Vincent J.-L. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5(1):73–79. doi: 10.4161/viru.26482.
    1. Marechal X., Favory R., Joulin O., et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock. 2008;29(5):572–576. doi: 10.1097/SHK.0b013e318157e926.
    1. Nikaido T., Tanino Y., Wang X., et al. Serum syndecan-4 as a possible biomarker in patients with acute pneumonia. Journal of Infectious Diseases. 2015 doi: 10.1093/infdis/jiv234.
    1. Loonen A. J. M., de Jager C. P. C., Tosserams J., et al. Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit. PLoS ONE. 2014;9(1) doi: 10.1371/journal.pone.0087315.e87315
    1. Pierrakos C., Vincent J.-L. Sepsis biomarkers: a review. Critical Care. 2010;14(1, article R15) doi: 10.1186/cc8872.
    1. Dandona P., Nix D., Wilson M. F., et al. Procalcitonin increase after endotoxin injection in normal subjects. Journal of Clinical Endocrinology and Metabolism. 1994;79(6):1605–1608.
    1. Christ-Crain M., Jaccard-Stolz D., Bingisser R., et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. The Lancet. 2004;363(9409):600–607. doi: 10.1016/s0140-6736(04)15591-8.
    1. Bouadma L., Luyt C.-E., Tubach F., et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. The Lancet. 2010;375(9713):463–474. doi: 10.1016/S0140-6736(09)61879-1.
    1. Clec'h C., Fosse J.-P., Karoubi P., et al. Differential diagnostic value of procalcitonin in surgical and medical patients with septic shock. Critical Care Medicine. 2006;34(1):102–107. doi: 10.1097/01.ccm.0000195012.54682.f3.
    1. Mimoz O., Benoist J. F., Edouard A. R., Assicot M., Bohuon C., Samii K. Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Medicine. 1998;24(2):185–188. doi: 10.1007/s001340050543.
    1. Sponholz C., Sakr Y., Reinhart K., Brunkhorst F. Diagnostic value and prognostic implications of serum procalcitonin after cardiac surgery: a systematic review of the literature. Critical Care. 2006;10(5, article R145) doi: 10.1186/cc5067.
    1. Kaczmarek A., Vandenabeele P., Krysko D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38(2):209–223. doi: 10.1016/j.immuni.2013.02.003.
    1. Uzzan B., Cohen R., Nicolas P., Cucherat M., Perret G.-Y. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Critical Care Medicine. 2006;34(7):1996–2003. doi: 10.1097/01.ccm.0000226413.54364.36.
    1. Meisner M., Tschaikowsky K., Hutzler A., Schick C., Schüttler J. Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Medicine. 1998;24(7):680–684. doi: 10.1007/s001340050644.
    1. Charles P. E., Tinel C., Barbar S., et al. Procalcitonin kinetics within the first days of sepsis: relationship with the appropriateness of antibiotic therapy and the outcome. Critical Care. 2009;13(2, article R38) doi: 10.1186/cc7751.
    1. Leentjens J., Kox M., Koch R. M., et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. American Journal of Respiratory and Critical Care Medicine. 2012;186(9):838–845. doi: 10.1164/rccm.201204-0645oc.
    1. Rau B. M., Frigerio I., Büchler M. W., et al. Evaluation of procalcitonin for predicting septic multiorgan failure and overall prognosis in secondary peritonitis: a prospective, international multicenter study. Archives of Surgery. 2007;142(2):134–142. doi: 10.1001/archsurg.142.2.134.
    1. Layios N., Lambermont B., Canivet J.-L., et al. Procalcitonin usefulness for the initiation of antibiotic treatment in intensive care unit patients. Critical Care Medicine. 2012;40(8):2304–2309. doi: 10.1097/CCM.0b013e318251517a.
    1. Jensen J.-U., Lundgren B., Hein L., et al. The Procalcitonin And Survival Study (PASS)—a randomised multi-center investigator-initiated trial to investigate whether daily measurements biomarker Procalcitonin and pro-active diagnostic and therapeutic responses to abnormal Procalcitonin levels, can improve survival in intensive care unit patients. Calculated sample size (target population): 1000 patients. BMC Infectious Diseases. 2008;8, article 91 doi: 10.1186/1471-2334-8-91.
    1. Tsangaris I., Plachouras D., Kavatha D., et al. Diagnostic and prognostic value of procalcitonin among febrile critically ill patients with prolonged ICU stay. BMC Infectious Diseases. 2009;9, article 213 doi: 10.1186/1471-2334-9-213.
    1. Clec'h C., Ferriere F., Karoubi P., et al. Diagnostic and prognostic value of procalcitonin in patients with septic shock. Critical Care Medicine. 2004;32(5):1166–1169. doi: 10.1097/01.CCM.0000126263.00551.06.
    1. Tortorano A. M., Dho G., Prigitano A., et al. Invasive fungal infections in the intensive care unit: a multicentre, prospective, observational study in Italy (2006–2008) Mycoses. 2012;55(1):73–79. doi: 10.1111/j.1439-0507.2011.02044.x.
    1. Montagna M. T., Caggiano G., Lovero G., et al. Epidemiology of invasive fungal infections in the intensive care unit: Results of a multicenter Italian survey (AURORA Project) Infection. 2013;41(3):645–653. doi: 10.1007/s15010-013-0432-0.
    1. Wisplinghoff H., Bischoff T., Tallent S. M., Seifert H., Wenzel R. P., Edmond M. B. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases. 2004;39(3):309–317. doi: 10.1086/421946.
    1. Gloor B., Müller C. A., Worni M., et al. Pancreatic infection in severe pancreatitis: the role of fungus and multiresistant organisms. Archives of Surgery. 2001;136(5):592–596. doi: 10.1001/archsurg.136.5.592.
    1. De Waele J. J., Vogelaers D., Blot S., Colardyn F. Fungal infections in patients with severe acute pancreatitis and the use of prophylactic therapy. Clinical Infectious Diseases. 2003;37(2):208–213. doi: 10.1086/375603.
    1. Martini A., Gottin L., Menestrina N., Schweiger V., Simion D., Vincent J.-L. Procalcitonin levels in surgical patients at risk of candidemia. Journal of Infection. 2010;60(6):425–430. doi: 10.1016/j.jinf.2010.03.003.
    1. Cortegiani A., Russotto V., Montalto F., et al. Procalcitonin as a marker of Candida species detection by blood culture and polymerase chain reaction in septic patients. BMC Anesthesiology. 2014;14, article 9 doi: 10.1186/1471-2253-14-9.
    1. Dou Y.-H., Du J.-K., Liu H.-L., Shong X.-D. The role of procalcitonin in the identification of invasive fungal infection-a systemic review and meta-analysis. Diagnostic Microbiology and Infectious Disease. 2013;76(4):464–469. doi: 10.1016/j.diagmicrobio.2013.04.023.
    1. Brodská H., Malíčková K., Adámková V., Benáková H., Šťastná M. M., Zima T. Significantly higher procalcitonin levels could differentiate Gram-negative sepsis from Gram-positive and fungal sepsis. Clinical and Experimental Medicine. 2013;13(3):165–170. doi: 10.1007/s10238-012-0191-8.
    1. Schuetz P., Amin D. N., Greenwald J. L. Role of procalcitonin in managing adult patients with respiratory tract infections. Chest. 2012;141(4):1063–1073. doi: 10.1378/chest.11-2430.
    1. Cuquemelle E., Soulis F., Villers D., et al. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. Intensive Care Medicine. 2011;37(5):796–800. doi: 10.1007/s00134-011-2189-1.
    1. Piacentini E., Sánchez B., Arauzo V., Calbo E., Cuchi E., Nava J. M. Procalcitonin levels are lower in intensive care unit patients with H1N1 influenza A virus pneumonia than in those with community-acquired bacterial pneumonia. A pilot study. Journal of Critical Care. 2011;26(2):201–205. doi: 10.1016/j.jcrc.2010.07.009.
    1. Annborn M., Dankiewicz J., Erlinge D., et al. Procalcitonin after cardiac arrest—an indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation. 2013;84(6):782–787. doi: 10.1016/j.resuscitation.2013.01.004.
    1. Yonetci N., Sungurtekin U., Oruc N., et al. Is procalcitonin a reliable marker for the diagnosis of infected pancreatic necrosis? ANZ Journal of Surgery. 2004;74(7):591–595. doi: 10.1111/j.1445-2197.2004.03059.x.
    1. Zavascki A. P., Goldani L. Z., Li J., Nation R. L. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. Journal of Antimicrobial Chemotherapy. 2007;60(6):1206–1215. doi: 10.1093/jac/dkm357.
    1. Sharp C. R., DeClue A. E., Haak C. E., Honaker A. R., Reinero C. R. Evaluation of the anti-endotoxin effects of polymyxin B in a feline model of endotoxemia. Journal of Feline Medicine and Surgery. 2010;12(4):278–285. doi: 10.1016/j.jfms.2009.12.014.
    1. Esteban E., Ferrer R., Alsina L., Artigas A. Immunomodulation in sepsis: the role of endotoxin removal by polymyxin B-immobilized cartridge. Mediators of Inflammation. 2013;2013:12. doi: 10.1155/2013/507539.507539
    1. Shoji H., Tani T., Hanasawa K., Kodama M. Extracorporeal endotoxin removal by polymyxin B immobilized fiber cartridge: designing and antiendotoxin efficacy in the clinical application. Therapeutic Apheresis. 1998;2(1):3–12. doi: 10.1111/j.1744-9987.1998.tb00066.x.
    1. Nishibori M., Takahashi H. K., Katayama H., et al. Specific removal of monocytes from peripheral blood of septic patients by polymyxin B-immobilized filter column. Acta Medica Okayama. 2009;63(1):65–69.
    1. Taniguchi T. Cytokine adsorbing columns. Contributions to Nephrology. 2010;166:134–141. doi: 10.1159/000314863.
    1. Spittler A., Razenberger M., Kupper H., et al. Relationship between interleukin-6 plasma concentration in patients with sepsis, monocyte phenotype, monocyte phagocytic properties, and cytokine production. Clinical Infectious Diseases. 2000;31(6):1338–1342. doi: 10.1086/317499.
    1. de Pablo R., Monserrat J., Reyes E., et al. Mortality in patients with septic shock correlates with anti-inflammatory but not proinflammatory immunomodulatory molecules. Journal of Intensive Care Medicine. 2011;26(2):125–132. doi: 10.1177/0885066610384465.
    1. Hetz H., Berger R., Recknagel P., Steltzer H. Septic shock secondary to β-hemolytic streptococcus-induced necrotizing fasciitis treated with a novel cytokine adsorption therapy. International Journal of Artificial Organs. 2014;37(5):422–426. doi: 10.5301/ijao.5000315.
    1. Basu R., Pathak S., Goyal J., Chaudhry R., Goel R. B., Barwal A. Use of a novel hemoadsorption device for cytokine removal as adjuvant therapy in a patient with septic shock with multi-organ dysfunction: a case study. Indian Journal of Critical Care Medicine. 2014;18(12):822–824. doi: 10.4103/0972-5229.146321.
    1. Wiegele M., Krenn C. G. Cytosorb in a patient with legionella-pneumonia associated rhabdomyolysis. ASAIO Journal. 2015;61(3):e14–e16. doi: 10.1097/mat.0000000000000197.
    1. Kellum J. A., Venkataraman R., Powner D., Elder M., Hergenroeder G., Carter M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Critical Care Medicine. 2008;36(1):268–272. doi: 10.1097/.
    1. Wilhelm M. J., Pratschke J., Beato F., et al. Activation of the heart by donor brain death accelerates acute rejection after transplantation. Circulation. 2000;102(19):2426–2433. doi: 10.1161/01.cir.102.19.2426.
    1. Day C. L., Kaufmann D. E., Kiepiela P., et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443(7109):350–354. doi: 10.1038/nature05115.
    1. Sharpe A. H., Wherry E. J., Ahmed R., Freeman G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nature Immunology. 2007;8(3):239–245. doi: 10.1038/ni1443.
    1. Huang X., Venet F., Wang Y. L., et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(15):6303–6308. doi: 10.1073/pnas.0809422106.
    1. Brahmamdam P., Inoue S., Unsinger J., Chang K. C., McDunn J. E., Hotchkiss R. S. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. Journal of Leukocyte Biology. 2010;88(2):233–240. doi: 10.1189/jlb.0110037.
    1. Topalian S. L., Hodi F. S., Brahmer J. R., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine. 2012;366(26):2443–2454. doi: 10.1056/nejmoa1200690.
    1. Hotchkiss R. S., Monneret G., Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious Diseases. 2013;13(3):260–268. doi: 10.1016/s1473-3099(13)70001-x.
    1. Bronckaers A., Hilkens P., Martens W., et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacology and Therapeutics. 2014;143(2):181–196. doi: 10.1016/j.pharmthera.2014.02.013.
    1. Dave S. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: a new approach to treat type 1 diabetes. Advanced Biomedical Research. 2014;3(1, article 266) doi: 10.4103/2277-9175.148247.
    1. Casiraghi F., Remuzzi G., Abbate M., Perico N. Multipotent mesenchymal stromal cell therapy and risk of malignancies. Stem Cell Reviews and Reports. 2013;9(1):65–79. doi: 10.1007/s12015-011-9345-4.
    1. Ye J.-S., Su X.-S., Stoltz J.-F., de Isla N., Zhang L. Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes. Cell Proliferation. 2015;48(2):157–165. doi: 10.1111/cpr.12165.
    1. Wise A. F., Ricardo S. D. Mesenchymal stem cells in kidney inflammation and repair. Nephrology. 2012;17(1):1–10. doi: 10.1111/j.1440-1797.2011.01501.x.
    1. Han X., Zhao L., Lu G., et al. Improving outcomes of acute kidney injury using mouse renal progenitor cells alone or in combination with erythropoietin or suramin. Stem Cell Research and Therapy. 2013;4(3, article 74) doi: 10.1186/scrt225.
    1. Xu F., Hu Y., Zhou J., Wang X. Mesenchymal stem cells in acute lung injury: are they ready for translational medicine? Journal of Cellular and Molecular Medicine. 2013;17(8):927–935. doi: 10.1111/jcmm.12063.
    1. Németh K., Leelahavanichkul A., Yuen P. S. T., et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E 2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine. 2009;15(1):42–49. doi: 10.1038/nm.1905.
    1. Morigi M., Introna M., Imberti B., et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells. 2008;26(8):2075–2082. doi: 10.1634/stemcells.2007-0795.
    1. Tögel F., Weiss K., Yang Y., Hu Z., Zhang P., Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. The American Journal of Physiology—Renal Physiology. 2007;292(5):F1626–F1635. doi: 10.1152/ajprenal.00339.2006.
    1. Anglani F., Forino M., Del Prete D., Tosetto E., Torregrossa R., D'Angelo A. In search of adult renal stem cells. Journal of Cellular and Molecular Medicine. 2004;8(4):474–487. doi: 10.1111/j.1582-4934.2004.tb00472.x.
    1. Bonventre J. V., Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney International. 2004;66(2):480–485. doi: 10.1111/j.1523-1755.2004.761_2.x.
    1. Curley G. F., Scott J. A., Laffey J. G. Therapeutic potential and mechanisms of action of mesenchymal stromal cells for Acute Respiratory Distress Syndrome. Current Stem Cell Research and Therapy. 2014;9(4):319–329. doi: 10.2174/1574888x09666140228144812.
    1. Curley G. F., Hayes M., Ansari B., et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501. doi: 10.1136/thoraxjnl-2011-201059.
    1. Lee J. W., Fang X., Gupta N., Serikov V., Matthay M. A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(38):16357–16362. doi: 10.1073/pnas.0907996106.
    1. Rautanen A., Mills T. C., Gordon A. C., et al. Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. The Lancet Respiratory Medicine. 2015;3(1):53–60. doi: 10.1016/s2213-2600(14)70290-5.

Source: PubMed

3
구독하다