Effect of a single-dose denosumab on semen quality in infertile men (the FITMI study): study protocol for a randomized controlled trial

Sam Kafai Yahyavi, Rune Holt, Li Juel Mortensen, Jørgen Holm Petersen, Niels Jørgensen, Anders Juul, Martin Blomberg Jensen, Sam Kafai Yahyavi, Rune Holt, Li Juel Mortensen, Jørgen Holm Petersen, Niels Jørgensen, Anders Juul, Martin Blomberg Jensen

Abstract

Background: Infertility is a common problem globally and impaired semen quality is responsible for up to 40% of all cases. Almost all infertile couples are treated with either insemination or assisted reproductive techniques (ARTs) independent of the etiology of infertility because no medical treatment exists. Denosumab is an antibody that blocks RANKL signaling and inhibition of testicular RANKL signaling has been suggested to improve semen quality in a pilot study. This RCT aims to assess whether treatment with denosumab can improve spermatogenesis in infertile men selected by serum AMH as a positive predictive biomarker. This paper describes the design of the study.

Methods/design: FITMI is a sponsor-investigator-initiated, double-blinded, placebo-controlled 1:1, single-center, randomized clinical trial. Subjects will be randomized to receive either a single-dose denosumab 60 mg subcutaneous injection or placebo. The study will be carried out at the Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen. The primary outcome of the study is defined as the difference in sperm concentration (millions pr. mL) one spermatogenesis (80 days) after inclusion.

Discussion: We describe a protocol for a planned RCT aimed at evaluating whether treatment with denosumab can improve the semen quality in infertile men selected by using serum AMH as a positive predictive biomarker. The results will provide evidence crucial for future treatment in a patient group where there is a huge unmet need.

Trial registration: Clinical Trials.gov NCT05212337 . Registered on 14 January 2022. EudraCT 2021-003,451-42. Registered on 23 June 2021. Ethical committee H-21040145. Registered on 23 December 2021.

Keywords: Denosumab; Impaired semen quality; Male infertility; Randomized controlled study.

Conflict of interest statement

The authors declare that they have no competing interests except that Martin Blomberg Jensen also is the CEO of “XY Therapeutics.”

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
The expected flow diagram of the progress through the study (CONSORT). Figure legend: An expected CONSORT diagram showing the expected flow of FITMI

References

    1. Huynh T. Selected genetic factors associated with male infertility. Hum Reprod Update. 2002;8(2):183–198. doi: 10.1093/humupd/8.2.183.
    1. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25(2):271–285. doi: 10.1016/j.beem.2010.08.006.
    1. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson A-M, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96(1):55–97. doi: 10.1152/physrev.00017.2015.
    1. Blomberg Jensen M, Lawaetz JG, Petersen JH, Juul A, Jørgensen N. Effects of vitamin D supplementation on semen quality, reproductive hormones, and live birth rate: a randomized clinical trial. J Clin Endocrinol Metab. 2017;103(3):870–881. doi: 10.1210/jc.2017-01656.
    1. Bøllehuus Hansen L, Kaludjerovic J, Nielsen JE, Rehfeld A, Poulsen NN, Ide N, et al. Influence of FGF23 and Klotho on male reproduction: Systemic vs direct effects. FASEB J. 2020;34(9):12436–12449. doi: 10.1096/fj.202000061RR.
    1. Juel Mortensen L, Lorenzen M, Jorgensen N, Andersson A-M, Nielsen JE, Petersen LI, et al. Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome. Bone. 2019;123:103–114. doi: 10.1016/j.bone.2019.03.022.
    1. Jensen MB. Vitamin D and male reproduction. Nat Rev Endocrinol. 2014;10:175–186. doi: 10.1038/nrendo.2013.262.
    1. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–192. doi: 10.1210/er.2007-0014.
    1. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2007;29(2):155–192. doi: 10.1210/er.2007-0014.
    1. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–176. doi: 10.1016/S0092-8674(00)81569-X.
    1. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–319. doi: 10.1016/S0092-8674(00)80209-3.
    1. Khosla S. Minireview: The OPG/RANKL/RANK System. Endocrinology. 2001;142(12):5050–5055. doi: 10.1210/endo.142.12.8536.
    1. Anastasilakis AD, Toulis KA, Polyzos SA, Terpos E. RANKL inhibition for the management of patients with benign metabolic bone disorders. Expert Opin Investig Drugs. 2009;18(8):1085–1102. doi: 10.1517/13543780903048929.
    1. Makras P, Polyzos SA, Papatheodorou A, Kokkoris P, Chatzifotiadis D, Anastasilakis AD. Parathyroid hormone changes following denosumab treatment in postmenopausal osteoporosis. Clin Endocrinol (Oxf) 2013;79(4):499–503. doi: 10.1111/cen.12188.
    1. Schwarz P, Rasmussen AQ, Kvist TM, Andersen UB, Jørgensen NR. Paget’s disease of the bone after treatment with Denosumab: A case report. Bone. 2012;50(5):1023–1025. doi: 10.1016/j.bone.2012.01.020.
    1. Polyzos SA, Singhellakis PN, Naot D, Adamidou F, Malandrinou FC, Anastasilakis AD, et al. Denosumab Treatment for Juvenile Paget’s disease: results from two adult patients with osteoprotegerin deficiency (“Balkan” mutation in the TNFRSF11BGene) J Clin Endocrinol Metab. 2014;99(3):703–707. doi: 10.1210/jc.2013-3762.
    1. Papapoulos S, Chapurlat R, Libanati C, Brandi ML, Brown JP, Czerwiński E, et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: Results from the first two years of the FREEDOM extension. J Bone Miner Res. 2012;27(3):694–701. doi: 10.1002/jbmr.1479.
    1. Boonen S, Adachi JD, Man Z, Cummings SR, Lippuner K, Törring O, et al. Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab. 2011;96(6):1727–1736. doi: 10.1210/jc.2010-2784.
    1. Sohn W, Lee E, Kankam MK, Egbuna O, Moffat G, Bussiere J, et al. An open-label study in healthy men to evaluate the risk of seminal fluid transmission of denosumab to pregnant partners. Br J Clin Pharmacol. 2015;81(2):362–369. doi: 10.1111/bcp.12798.
    1. Bussiere JL, Pyrah I, Boyce R, Branstetter D, Loomis M, Andrews-Cleavenger D, et al. Reproductive toxicity of denosumab in cynomolgus monkeys. Reprod Toxicol. 2013;42:27–40. doi: 10.1016/j.reprotox.2013.07.018.
    1. Uhland AM, Kwiecinski GG, DeLuca HF. Normalization of serum calcium restores fertility in vitamin D-deficient male rats. J Nutr. 1992;122(6):1338–1344. doi: 10.1093/jn/122.6.1338.
    1. Kwiecinski GG, Petrie GI, DeLuca HF. Vitamin D is necessary for reproductive functions of the male rat. J Nutr. 1989;119(5):741–744. doi: 10.1093/jn/119.5.741.
    1. Jørgensen A, Blomberg Jensen M, Nielsen JE, Juul A, Rajpert-De ME. Influence of vitamin D on cisplatin sensitivity in testicular germ cell cancer-derived cell lines and in a NTera2 xenograft model. J Steroid Biochem Mol Biol. 2013;136:238–246. doi: 10.1016/j.jsbmb.2012.10.008.
    1. Blomberg Jensen M, Jørgensen A, Nielsen JE, Steinmeyer A, Leffers H, Juul A, et al. Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo. Neoplasia. 2012;14(10):952–IN18. doi: 10.1593/neo.121164.
    1. Blomberg Jensen M, Lieben L, Nielsen JE, Willems A, Jørgensen A, Juul A, et al. Characterization of the testicular, epididymal and endocrine phenotypes in the Leuven Vdr-deficient mouse model: Targeting estrogen signalling. Mol Cell Endocrinol. 2013;377(1–2):93–102. doi: 10.1016/j.mce.2013.06.036.
    1. Blomberg Jensen M, Andreassen CH, Jørgensen A, et al. RANKL regulates male reproductive function. Nat Commun. 2021;12(1):1–15. doi: 10.1038/s41467-021-22734-8.
    1. Chan A-W, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346(jan08 15):7586. doi: 10.1136/bmj.e7586.
    1. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) ICH Harmonised Guideline Integrated Addendum to ICH E6(R1): Guideline for good clinical practice E6(R2). 2016.
    1. Demets DL, Lan KKG. Interim analysis: The alpha spending function approach. Stat Med. 1994;13(13–14):1341–1352. doi: 10.1002/sim.4780131308.
    1. Adler RA, Gill RS. Clinical utility of denosumab for treatment of bone loss in men and women. Clin Interv Aging. 2011;6:119–124. doi: 10.2147/CIA.S14565.
    1. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22(6):1506–1512. doi: 10.1093/humrep/dem046.
    1. Lunenfeld B. Infertility in the third millennium: implications for the individual, family and society: Condensed Meeting Report from the Bertarelli Foundation’s Second Global Conference. Hum Reprod Update. 2004;10(4):317–326. doi: 10.1093/humupd/dmh028.

Source: PubMed

3
구독하다