A Novel Insulin/Glucose Model after a Mixed-Meal Test in Patients with Type 1 Diabetes on Insulin Pump Therapy

Luca Marchetti, Federico Reali, Marco Dauriz, Corinna Brangani, Linda Boselli, Giulia Ceradini, Enzo Bonora, Riccardo C Bonadonna, Corrado Priami, Luca Marchetti, Federico Reali, Marco Dauriz, Corinna Brangani, Linda Boselli, Giulia Ceradini, Enzo Bonora, Riccardo C Bonadonna, Corrado Priami

Abstract

Current closed-loop insulin delivery methods stem from sophisticated models of the glucose-insulin (G/I) system, mostly based on complex studies employing glucose tracer technology. We tested the performance of a new minimal model (GLUKINSLOOP 2.0) of the G/I system to characterize the glucose and insulin dynamics during multiple mixed meal tests (MMT) of different sizes in patients with type 1 diabetes (T1D) on insulin pump therapy (continuous subcutaneous insulin infusion, CSII). The GLUKINSLOOP 2.0 identified the G/I system, provided a close fit of the G/I time-courses and showed acceptable reproducibility of the G/I system parameters in repeated studies of identical and double-sized MMTs. This model can provide a fairly good and reproducible description of the G/I system in T1D patients on CSII, and it may be applied to create a bank of "virtual" patients. Our results might be relevant at improving the architecture of upcoming closed-loop CSII systems.

Figures

Figure 1. Time courses of plasma insulin…
Figure 1. Time courses of plasma insulin and glucose levels during the 292 Kcal and 600 Kcal MMTs.
Panels A,B: mean (±SEM) plasma insulin and glucose concentrations at each time point during the 292 Kcal MMT (MMT1) in the 10 study participants. Panels C,D: MMT2, n = 3, MMT = 292 Kcal. Panels E-F: MMT2, n = 3, MMT = 600 Kcal.
Figure 2. The GLUKINSLOOP 2.0 model.
Figure 2. The GLUKINSLOOP 2.0 model.
In this schematic representation of the model continuous arrows indicate transformations and dashed ones indicate regulations. Arrows pointing towards grey dots indicate degradation. A more detailed figure and an accompanying thorough explanation of the model are provided in the Supplementary Material (Figure S1).
Figure 3. Mean weighted residuals of the…
Figure 3. Mean weighted residuals of the model fit to experimental insulin and glucose time courses during MMT1 and MMT2.
The weighted residuals are a quantitative point-by-point assessment of the goodness-of-fit of the model to the experimental data: a theoretically perfect fit should generate weighted residuals with mean 0 and SD of 1, reflecting the distribution of errors during the experimental sampling. Panels A,B: mean ± SD of weighted residuals at each time point during the 292 Kcal MMT (MMT1) in all 10 study participants. Panels C,D: MMT2, n = 3, MMT = 292 Kcal. Panels E,F: MMT2, n = 3, MMT = 600 Kcal.
Figure 4. The Oral Glucose Input function.
Figure 4. The Oral Glucose Input function.
Panels (A–C) show the output of the OGI function layered by different MMTs. The OGI function, i.e. the predicted glucose rate of appearance in the bloodstream at each time point after the MMT ingestion, is provided as mean ± SEM of the individual OGI values for the study patients undergoing the MMT1 and MMT2 and is expressed as mg/Kg/min (see Figure S12 for the same panels expressed as μmol/min). Curves’ shapes and peaks are consistent with literature’s analogous functions. Detailed description of the function can be found in Supplementary Material.

References

    1. Ferrannini E. & DeFronzo R. A. In International Textbook of Diabetes Mellitus Vol. 1 (eds DeFronzo R. A., Ferrannini E., Zimmet P. & Alberti K. G. M. M.) Ch. 14, 211–233 (John Wiley & Sons, Ltd, Chichester, UK, 2015).
    1. Natali A., Prato S. D. & Mari A. In International Textbook of Diabetes Mellitus Vol. 1 (eds DeFronzo R. A., Ferrannini E., Zimmet P. & Alberti K. G. M. M.) Ch. 8, 108–124 (John Wiley & Sons, Ltd, Chichester, UK, 2015).
    1. DeFronzo R. A., Tobin J. D. & Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. The American journal of physiology 237, E214–E223 (1979).
    1. Priami C. M. M. J. Analysis of biological systems. (Imperial College Press, 2015).
    1. Priami C. Algorithmic Systems Biology. Communications of the Acm 52, 80–88, doi: 10.1145/1506409.1506427 (2009).
    1. Bergman R. N., Phillips L. S. & Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68, 1456–1467 (1981).
    1. Cobelli C. et al.. The oral minimal model method. Diabetes 63, 1203–1213, doi: 10.2337/db13-1198 (2014).
    1. Cobelli C., Man C. D., Pedersen M. G., Bertoldo A. & Toffolo G. Advancing our understanding of the glucose system via modeling: a perspective. IEEE Trans Biomed Eng 61, 1577–1592, doi: 10.1109/TBME.2014.2310514 (2014).
    1. Cobelli C. et al.. Assessment of beta-cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. American journal of physiology. Endocrinology and metabolism 293, E1–E15 (2007).
    1. Dalla Man C., Raimondo D. M., Rizza R. A. & Cobelli C. GIM, simulation software of meal glucose-insulin model. J Diabetes Sci Technol 1, 323–330 (2007).
    1. Dalla Man C., Rizza R. A. & Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54, 1740–1749, doi: 10.1109/TBME.2007.893506 (2007).
    1. Insel P. A. et al.. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest 55, 1057–1066, doi: 10.1172/JCI108006 (1975).
    1. Manca V., M. L. & Pagliarini R. MP Modelling of Glucose-Insulin Interactions in the Intravenous Glucose Tolerance Test. International Journal of Natural Computing Research (IJNCR) 2, 13–24, doi: 10.4018/jncr.2011070102 (2011).
    1. Mari A. Mathematical modeling in glucose metabolism and insulin secretion. Curr Opin Clin Nutr Metab Care 5, 495–501 (2002).
    1. Mari A. et al.. Meal and oral glucose tests for assessment of beta -cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 283, E1159–E1166, doi: 10.1152/ajpendo.00093.2002 (2002).
    1. Palumbo P., Ditlevsen S., Bertuzzi A. & De Gaetano A. Mathematical modeling of the glucose-insulin system: a review. Math Biosci 244, 69–81, doi: 10.1016/j.mbs.2013.05.006 (2013).
    1. Salinari S., Bertuzzi A. & Mingrone G. Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test. Am J Physiol Endocrinol Metab 300, E955–E965, doi: 10.1152/ajpendo.00451.2010 (2011).
    1. Silber H. E., Jauslin P. M., Frey N. & Karlsson M. O. An integrated model for the glucose-insulin system. Basic Clin Pharmacol Toxicol 106, 189–194, doi: 10.1111/j.1742-7843.2009.00510.x (2010).
    1. Toffolo G., Bergman R. N., Finegood D. T., Bowden C. R. & Cobelli C. Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog. Diabetes 29, 979–990 (1980).
    1. Toffolo G., De Grandi F. & Cobelli C. Estimation of beta-cell sensitivity from intravenous glucose tolerance test C-peptide data. Knowledge of the kinetics avoids errors in modeling the secretion. Diabetes 44, 845–854 (1995).
    1. Tura A., Muscelli E., Gastaldelli A., Ferrannini E. & Mari A. Altered pattern of the incretin effect as assessed by modelling in individuals with glucose tolerance ranging from normal to diabetic. Diabetologia 57, 1199–1203, doi: 10.1007/s00125-014-3219-7 (2014).
    1. Trombetta M. et al.. Type 2 diabetes mellitus: a disease of the governance of the glucose-insulin system: an experimental metabolic control analysis study. Nutr Metab Cardiovasc Dis 23, 23–30, doi: 10.1016/j.numecd.2011.05.006 (2013).
    1. Mari A., Pacini G., Murphy E., Ludvik B. & Nolan J. J. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 24, 539–548 (2001).
    1. Man C. D. et al.. The UVA/PADOVA Type 1 Diabetes Simulator: New Features. J Diabetes Sci Technol 8, 26–34, doi: 10.1177/1932296813514502 (2014).
    1. Vicini P., Caumo A. & Cobelli C. The hot IVGTT two-compartment minimal model: indexes of glucose effectiveness and insulin sensitivity. The American journal of physiology 273, E1024–E1032 (1997).
    1. Dalla Man C. et al.. Measurement of selective effect of insulin on glucose disposal from labeled glucose oral test minimal model. Am J Physiol Endocrinol Metab 289, E909–E914, doi: 10.1152/ajpendo.00299.2004 (2005).
    1. Basu R. et al.. Use of a novel triple-tracer approach to assess postprandial glucose metabolism. Am J Physiol Endocrinol Metab 284, E55–E69, doi: 10.1152/ajpendo.00190.2001 (2003).
    1. Caumo A., Bergman R. N. & Cobelli C. Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index. The Journal of clinical endocrinology and metabolism 85, 4396–4402, doi: 10.1210/jcem.85.11.6982 (2000).
    1. Greenbaum C. J. et al.. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 31, 1966–1971, doi: 10.2337/dc07-2451 (2008).
    1. Dalla Man C. et al.. Two-hour seven-sample oral glucose tolerance test and meal protocol: minimal model assessment of beta-cell responsivity and insulin sensitivity in nondiabetic individuals. Diabetes 54, 3265–3273 (2005).
    1. Dalla Man C., Caumo A. & Cobelli C. The oral glucose minimal model: estimation of insulin sensitivity from a meal test. IEEE Trans Biomed Eng 49, 419–429, doi: 10.1109/10.995680 (2002).
    1. Breda E., Cavaghan M. K., Toffolo G., Polonsky K. S. & Cobelli C. Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity. Diabetes 50, 150–158 (2001).
    1. De Gaetano A. & Arino O. Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40, 136–168, doi: 10.1007/s002850050007 (2000).
    1. Dalla Man C. et al.. Modeling hepatic insulin sensitivity during a meal: validation against the euglycemic hyperinsulinemic clamp. Am J Physiol Endocrinol Metab 304, E819–E825, doi: 10.1152/ajpendo.00482.2012 (2013).
    1. Visentin R. et al.. Hepatic insulin sensitivity in healthy and prediabetic subjects: from a dual- to a single-tracer oral minimal model. Am J Physiol Endocrinol Metab 309, E161–E167, doi: 10.1152/ajpendo.00358.2014 (2015).
    1. Dalla Man C. et al.. Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. Am J Physiol Endocrinol Metab 287, E637–E643, doi: 10.1152/ajpendo.00319.2003 (2004).
    1. Steil G. M. et al.. Evaluation of insulin sensitivity and beta-cell function indexes obtained from minimal model analysis of a meal tolerance test. Diabetes 53, 1201–1207 (2004).
    1. Dalla Man C. et al.. Insulin sensitivity by oral glucose minimal models: validation against clamp. Am J Physiol Endocrinol Metab 289, E954–E959, doi: 10.1152/ajpendo.00076.2005 (2005).
    1. Bock G. et al.. Effects of nonglucose nutrients on insulin secretion and action in people with pre-diabetes. Diabetes 56, 1113–1119, doi: 10.2337/db06-1272 (2007).
    1. Mallad A. et al.. Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches. Diabetes Technol Ther 17, 587–595, doi: 10.1089/dia.2015.0011 (2015).
    1. Mallad A. et al.. Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. Am J Physiol Endocrinol Metab 308, E1106–E1115, doi: 10.1152/ajpendo.00014.2015 (2015).
    1. Steil G. M. Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J Diabetes Sci Technol 7, 1621–1631 (2013).
    1. Russell S. J. et al.. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med 371, 313–325, doi: 10.1056/NEJMoa1314474 (2014).
    1. Thabit H. et al.. Home Use of an Artificial Beta Cell in Type 1 Diabetes. N Engl J Med 373, 2129–2140, doi: 10.1056/NEJMoa1509351 (2015).
    1. Kropff J. et al.. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol 3, 939–947, doi: 10.1016/S2213-8587(15)00335-6 (2015).
    1. Maffeis C. et al.. Ghrelin, insulin sensitivity and postprandial glucose disposal in overweight and obese children. Eur J Endocrinol 154, 61–68, doi: 10.1530/eje.1.02055 (2006).
    1. Bonora E. et al.. Hyperinsulinemia and insulin resistance are independently associated with plasma lipids, uric acid and blood pressure in non-diabetic subjects. The GISIR database. Nutr Metab Cardiovasc Dis 18, 624–631, doi: 10.1016/j.numecd.2007.05.002 (2008).
    1. Cobelli C., Pacini G., Toffolo G. & Sacca L. Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT. The American journal of physiology 250, E591–E598 (1986).
    1. Man C. D., Toffolo G., Basu R., Rizza R. A. & Cobelli C. Use of labeled oral minimal model to measure hepatic insulin sensitivity. American journal of physiology. Endocrinology and metabolism 295, E1152–E1159, doi: 10.1152/ajpendo.00486.2007 (2008).
    1. Bergman R. N., Ider Y. Z., Bowden C. R. & Cobelli C. Quantitative estimation of insulin sensitivity. The American journal of physiology 236, E667–E677 (1979).
    1. Bonetti S. et al.. Variants of GCKR affect both beta-cell and kidney function in patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study 2. Diabetes Care 34, 1205–1210, doi: 10.2337/dc10-2218 (2011).
    1. Bertuzzi A., Salinari S. & Mingrone G. Insulin granule trafficking in beta-cells: mathematical model of glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 293, E396–E409, doi: 10.1152/ajpendo.00647.2006 (2007).
    1. Cobelli C. & Pacini G. Insulin secretion and hepatic extraction in humans by minimal modeling of C-peptide and insulin kinetics. Diabetes 37, 223–231 (1988).
    1. De Gaetano A. et al.. Routine OGTT: a robust model including incretin effect for precise identification of insulin sensitivity and secretion in a single individual. PLoS One 8, e70875, doi: 10.1371/journal.pone.0070875 (2013).
    1. Coleman T. F. Y. L. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Mathematical Programming 67, 189–224, doi: 10.1007/BF01582221 (1994).
    1. Coleman T. F. Y. L. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization 6, 418–445, doi: 0.1137/0806023 (1996).
    1. Gostner R., Baldacci B., Morine M. J. & Priami C. Graphical Modeling Tools for Systems Biology. Acm Computing Surveys 47, 16, doi: 10.1145/2633461 (2015).

Source: PubMed

3
구독하다