Dynamic versus static medial patellofemoral ligament reconstruction technique in the treatment of recurrent patellar dislocation: a randomized clinical trial protocol

Anna Bartsch, Corina Nüesch, Bertram Rieger, Annegret Mündermann, Christian Egloff, Anna Bartsch, Corina Nüesch, Bertram Rieger, Annegret Mündermann, Christian Egloff

Abstract

Background: The redislocation rate of conservatively treated patella instability is high. One of the leading surgical strategies is medial patellofemoral ligament reconstruction. Over-tensioning is one of the most challenging complications in static medial patellofemoral ligament reconstruction as the graft used for reconstruction is isometric and the anatomical MPFL is a mostly dynamic structure. As an alternative to established static reconstruction techniques, dynamic graft techniques have been introduced for stabilizing the patella with the aim of providing a more physiological reconstruction of the medial patellofemoral ligament. To date, data on clinical outcomes are scarce and on biomechanical outcomes of the dynamic MPFL reconstruction are lacking. Here, we present the protocol of a randomized clinical trial for comparing clinical and biomechanical outcomes of dynamic versus static medial patellofemoral ligament reconstruction.

Methods: This study is a prospective, single blinded, randomized, multicenter, multimodal (clinical and biomechanical) clinical trial. Patients with recurrent patella dislocation requiring isolated MPFL reconstruction will be recruited and randomized to the dynamic or static reconstruction technique. Participants will be followed up for 2 years with a total of five follow-ups. Preoperative magnetic resonance imaging, upright radiographs, surgical reports and patient records will be evaluated, and clinical and functional outcomes will be measured. Patient-reported knee function and anterior knee pain as assessed with the Kujala score will serve as primary outcome. For biomechanical outcome, pre- and postoperative evaluations will be performed to assess isokinetic muscle strength, gait asymmetry, joint kinematics and kinetics, and timing of muscle activity.

Discussion: The results of the study will clarify whether the reported surgery success for patella stabilization via dynamic MPFL reconstruction is due to muscle contraction or to the passive tenodesis effect combined with clinical outcome measures. With this study, we will provide much needed information on knee biomechanics after dynamic versus static MPFL reconstruction to provide evidence to support orthopedic surgeons in evidence-based decision-making in their quest for surgical techniques most favorable for their patients. Trial registration The study protocol was registered at clinicaltrials.gov (NCT04849130). Registered 19 April 2021, https://ichgcp.net/clinical-trials-registry/NCT04849130 .

Keywords: Knee biomechanics; MPFL; MPFL reconstruction; Medial patellofemoral ligament; Patella instability; Patellofemoral joint; Surface EMG.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Native anatomy, static and dynamic MPFL reconstruction
Fig. 2
Fig. 2
Study procedures to investigate clinical and biomechanical outcome after dynamic and static MPFL reconstruction

References

    1. Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints—part II: retropatellar surface. J Biomech Eng. 1983;105:226–236. doi: 10.1115/1.3138410.
    1. Reilly DT, Martens M. Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities. Acta Orthop Scand. 1972;43:126–137. doi: 10.3109/17453677208991251.
    1. Draper CE, Besier TF, Gold GE, et al. Is cartilage thickness different in young subjects with and without patellofemoral pain? Osteoarthr Cartil. 2006;14:931–937. doi: 10.1016/j.joca.2006.03.006.
    1. Widuchowski W, Lukasik P, Kwiatkowski G, et al. Isolated full thickness chondral injuries. prevalance and outcome of treatment. A retrospective study of 5233 knee arthroscopies. Acta Chir Orthop Traumatol Cech. 2008;75:382–386.
    1. Nomura E, Inoue M, Kurimura M. Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy. 2003;19:717–721. doi: 10.1016/S0749-8063(03)00401-8.
    1. Mäenpää H, Lehto MU. Patellofemoral osteoarthritis after patellar dislocation. Clin Orthopaed Relat Res. 1997;339:156–162. doi: 10.1097/00003086-199706000-00021.
    1. Geenen E, Molenaers G, Martens M. Patella alta in patellofemoral instability. Acta Orthop Belg. 1989;55:387–393.
    1. Fucentese SF. Patellofemoral instability. Der Orthopade. 2018;47:77–86. doi: 10.1007/s00132-017-3501-8.
    1. Amis AA, Firer P, Mountney J, et al. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10:215–220. doi: 10.1016/S0968-0160(03)00006-1.
    1. Goodfellow J, Hungerford DS, Zindel M. Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br. 1976;58:287–290. doi: 10.1302/0301-620X.58B3.956243.
    1. Felus J, Kowalczyk B. Age-related differences in medial patellofemoral ligament injury patterns in traumatic patellar dislocation: case series of 50 surgically treated children and adolescents. Am J Sports Med. 2012;40:2357–2364. doi: 10.1177/0363546512457558.
    1. Moiz M, Smith N, Smith TO, et al. Clinical outcomes after the nonoperative management of lateral patellar dislocations: a systematic review. Orthop J Sports Med. 2018;6:2325967118766275. doi: 10.1177/2325967118766275.
    1. Moström EB, Mikkelsen C, Weidenhielm L, et al. Long-term follow-up of nonoperatively and operatively treated acute primary patellar dislocation in skeletally immature patients. Sc World J. 2014;2014:473281.
    1. Iliadis AD, Jaiswal PK, Khan W, et al. The operative management of patella malalignment. Open Orthopaed J. 2012;6:327–339. doi: 10.2174/1874325001206010327.
    1. Vetrano M, Oliva F, Bisicchia S, et al. I.S.Mu.L.T. first-time patellar dislocation guidelines. Muscles Ligaments Tendons J. 2017;7:1–10. doi: 10.11138/mltj/2017.7.1.001.
    1. Migliorini F, Oliva F, Maffulli GD, et al. Isolated medial patellofemoral ligament reconstruction for recurrent patellofemoral instability: analysis of outcomes and risk factors. J Orthop Surg Res. 2021;16:239. doi: 10.1186/s13018-021-02383-9.
    1. Migliorini F, Eschweiler J, Betsch M, et al. Prognostic factors for isolated medial patellofemoral ligament reconstruction: a systematic review. The Surgeon. 2021.
    1. Geierlehner A, Liebensteiner M, Schöttle P, et al. Prevailing disagreement in the treatment of complex patellar instability cases: an online expert survey of the AGA Knee-Patellofemoral Committee. Knee Surg Sports Traumatol Arthrosc. 2020;28:2697–2705. doi: 10.1007/s00167-020-05936-3.
    1. Migliorini F, Baroncini A, Eschweiler J, et al. Interference screws vs. suture anchors for isolated medial patellofemoral ligament femoral fixation: a systematic review. J Sport Health Sci. 2022;11:123–129. doi: 10.1016/j.jshs.2020.11.011.
    1. Schottle PB, Romero J, Schmeling A, et al. Technical note: anatomical reconstruction of the medial patellofemoral ligament using a free gracilis autograft. Arch Orthop Trauma Surg. 2008;128:479–484. doi: 10.1007/s00402-007-0300-4.
    1. Burrus MT, Werner BC, Conte EJ, et al. Troubleshooting the femoral attachment during medial patellofemoral ligament reconstruction: location, location, location. Orthopaed J Sports Med. 2015;3:2325967115569198. doi: 10.1177/2325967115569198.
    1. Elias JJ, Cosgarea AJ. Technical errors during medial patellofemoral ligament reconstruction could overload medial patellofemoral cartilage: a computational analysis. Am J Sports Med. 2006;34:1478–1485. doi: 10.1177/0363546506287486.
    1. Sanchis-Alfonso V. Guidelines for medial patellofemoral ligament reconstruction in chronic lateral patellar instability. J Am Acad Orthop Surg. 2014;22:175–182. doi: 10.5435/JAAOS-22-03-175.
    1. Kernkamp WA, Wang C, Li C, et al. The medial patellofemoral ligament is a dynamic and anisometric structure: an in vivo study on length changes and isometry. Am J Sports Med. 2019;47:1645–1653. doi: 10.1177/0363546519840278.
    1. Beck P, Brown NA, Greis PE, et al. Patellofemoral contact pressures and lateral patellar translation after medial patellofemoral ligament reconstruction. Am J Sports Med. 2007;35:1557–1563. doi: 10.1177/0363546507300872.
    1. Lorbach O, Zumbansen N, Kieb M, et al. Medial patellofemoral ligament reconstruction: impact of knee flexion angle during graft fixation on dynamic patellofemoral contact pressure-a biomechanical study. Arthroscopy. 2018;34:1072–1082. doi: 10.1016/j.arthro.2017.09.047.
    1. Ostermeier S, Holst M, Bohnsack M, et al. Dynamic measurement of patellofemoral contact pressure following reconstruction of the medial patellofemoral ligament: an in vitro study. Clin Biomech (Bristol, Avon) 2007;22:327–335. doi: 10.1016/j.clinbiomech.2006.10.002.
    1. Decante C, Geffroy L, Salaud C, et al. Descriptive and dynamic study of the medial patellofemoral ligament (MPFL) SRA. 2019;41:763–774.
    1. Becher C, Kley K, Lobenhoffer P, et al. Dynamic versus static reconstruction of the medial patellofemoral ligament for recurrent lateral patellar dislocation. Knee Surg Sports Traumatol Arthrosc. 2014;22:2452–2457. doi: 10.1007/s00167-014-3020-7.
    1. Buckens CF, Saris DB. Reconstruction of the medial patellofemoral ligament for treatment of patellofemoral instability: a systematic review. Am J Sports Med. 2010;38:181–188. doi: 10.1177/0363546509353132.
    1. Rood A, Hannink G, Lenting A, et al. Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions. Am J Sports Med. 2015;43:2538–2544. doi: 10.1177/0363546515594447.
    1. Singhal R, Rogers S, Charalambous CP. Double-bundle medial patellofemoral ligament reconstruction with hamstring tendon autograft and mediolateral patellar tunnel fixation: a meta-analysis of outcomes and complications. Bone Joint J. 2013;95:900–905. doi: 10.1302/0301-620X.95B7.31417.
    1. Maffulli N, Aicale R, D'Addona A, et al. Combined medial patellofemoral and patellotibial reconstruction with soft tissue fixation in recurrent patellar dislocation. Injury. 2020;51:1867–1873. doi: 10.1016/j.injury.2020.06.028.
    1. Aicale R, Maffulli N. Combined medial patellofemoral and medial patellotibial reconstruction for patellar instability: a PRISMA systematic review. J Orthop Surg Res. 2020;15:529. doi: 10.1186/s13018-020-02072-z.
    1. Kujala UM, Jaakkola LH, Koskinen SK, et al. Scoring of patellofemoral disorders. Arthroscopy. 1993;9:159–163. doi: 10.1016/S0749-8063(05)80366-4.
    1. Kümmel D, Preiss S, Harder LP, et al. Measurement properties of the German version of the IKDC subjective knee form (IKDC-SKF) J Patient Report Outcomes. 2018;2:31. doi: 10.1186/s41687-018-0058-1.
    1. Herdman M, Gudex C, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L) Qual Life Res. 2011;20:1727–1736. doi: 10.1007/s11136-011-9903-x.
    1. Ostermeier S, Stukenborg-Colsman C, Wirth CJ, et al. Reconstruction of the medial patellofemoral ligament by tunnel transfer of the semitendinosus tendon. Oper Orthopad Traumatol. 2007;19:489–501. doi: 10.1007/s00064-007-1022-0.
    1. Anderson MC, Brown NA, Bachus KN, et al. A cadaver knee simulator to evaluate the biomechanics of rectus femoris transfer. Gait Posture. 2009;30:87–92. doi: 10.1016/j.gaitpost.2009.03.007.
    1. Vermeiren A, Bar-On L, Van Campenhout A. Rectus femoris transfer improves stiff knee gait in hemiplegic adults following stroke or traumatic brain injury. Acta Orthop Belg. 2019;85:12–20.
    1. Yucesoy CA, Ateş F, Akgün U, et al. Measurement of human gracilis muscle isometric forces as a function of knee angle, intraoperatively. J Biomech. 2010;43:2665–2671. doi: 10.1016/j.jbiomech.2010.06.002.
    1. Balcarek P, Oberthür S, Hopfensitz S, et al. Which patellae are likely to redislocate? Knee Surg Sports Traumatol Arthrosc. 2014;22:2308–2314. doi: 10.1007/s00167-013-2650-5.
    1. Dejour H, Walch G, Nove-Josserand L, et al. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26. doi: 10.1007/BF01552649.
    1. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502. doi: 10.1136/ard.16.4.494.
    1. Bartsch A, Müller S, Egloff C. Dynamic medial patellofemoral ligament reconstruction in patellar instability: a surgical technique. Video J Sports Med. 2021;1:26350254211023506. doi: 10.1177/26350254211023506.
    1. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Ordway NR, Hand N, Briggs G, et al. Reliability of knee and ankle strength measures in an older adult population. J Strength Cond Res. 2006;20:82–87.
    1. Hermens HJ, Freriks B, Disselhorst-Klug C, et al. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10:361–374. doi: 10.1016/S1050-6411(00)00027-4.
    1. Lovell GA, Blanch PD, Barnes CJ. EMG of the hip adductor muscles in six clinical examination tests. Phys Ther Sport. 2012;13:134–140. doi: 10.1016/j.ptsp.2011.08.004.
    1. Dyrby CO, Andriacchi TP. Secondary motions of the knee during weight bearing and non-weight bearing activities. J Orthop Res. 2004;22:794–800. doi: 10.1016/j.orthres.2003.11.003.
    1. Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 2005;52:2835–2844. doi: 10.1002/art.21262.
    1. De Luca CJ, Gilmore LD, Kuznetsov M, et al. Filtering the surface EMG signal: movement artifact and baseline noise contamination. J Biomech. 2010;43:1573–1579. doi: 10.1016/j.jbiomech.2010.01.027.
    1. Yang JF, Winter DA. Electromyographic amplitude normalization methods: improving their sensitivity as diagnostic tools in gait analysis. Arch Phys Med Rehabil. 1984;65:517–521.
    1. Stokes IA, Gardner-Morse M, Henry SM, et al. Decrease in trunk muscular response to perturbation with preactivation of lumbar spinal musculature. Spine. 2000;25:1957–1964. doi: 10.1097/00007632-200008010-00015.
    1. Hodt-Billington C, Helbostad JL, Vervaat W, et al. Changes in gait symmetry, gait velocity and self-reported function following total hip replacement. J Rehabil Med. 2011;43:787–793. doi: 10.2340/16501977-0849.
    1. Kang H, Wang F, Cao J, et al. A prospective randomized trial evaluating two different tensioning techniques for medial patellofemoral ligament reconstruction. Knee. 2016;23:826–829. doi: 10.1016/j.knee.2016.02.008.
    1. Guzzanti V, Gigante A, Di Lazzaro A, et al. Patellofemoral malalignment in adolescents. Computerized tomographic assessment with or without quadriceps contraction. Am J Sports Med. 1994;22:55–60. doi: 10.1177/036354659402200110.
    1. O'Donnell P, Johnstone C, Watson M, et al. Evaluation of patellar tracking in symptomatic and asymptomatic individuals by magnetic resonance imaging. Skelet Radiol. 2005;34:130–135. doi: 10.1007/s00256-004-0867-6.
    1. Amis AA, Senavongse W, Bull AM. Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res. 2006;24:2201–2211. doi: 10.1002/jor.20268.

Source: PubMed

3
구독하다