The Analysis of Platelet-Derived circRNA Repertoire as Potential Diagnostic Biomarker for Non-Small Cell Lung Cancer

Silvia D'Ambrosi, Allerdien Visser, Mafalda Antunes-Ferreira, Ankie Poutsma, Stavros Giannoukakos, Nik Sol, Siamack Sabrkhany, Idris Bahce, Marijke J E Kuijpers, Mirjam G A Oude Egbrink, Arjan W Griffioen, Myron G Best, Danijela Koppers-Lalic, Cees Oudejans, Thomas Würdinger, Silvia D'Ambrosi, Allerdien Visser, Mafalda Antunes-Ferreira, Ankie Poutsma, Stavros Giannoukakos, Nik Sol, Siamack Sabrkhany, Idris Bahce, Marijke J E Kuijpers, Mirjam G A Oude Egbrink, Arjan W Griffioen, Myron G Best, Danijela Koppers-Lalic, Cees Oudejans, Thomas Würdinger

Abstract

Tumor-educated Platelets (TEPs) have emerged as rich biosources of cancer-related RNA profiles in liquid biopsies applicable for cancer detection. Although human blood platelets have been found to be enriched in circular RNA (circRNA), no studies have investigated the potential of circRNA as platelet-derived biomarkers for cancer. In this proof-of-concept study, we examine whether the circRNA signature of blood platelets can be used as a liquid biopsy biomarker for the detection of non-small cell lung cancer (NSCLC). We analyzed the total RNA, extracted from the platelet samples collected from NSCLC patients and asymptomatic individuals, using RNA sequencing (RNA-Seq). Identification and quantification of known and novel circRNAs were performed using the accurate CircRNA finder suite (ACFS), followed by the differential transcript expression analysis using a modified version of our thromboSeq software. Out of 4732 detected circRNAs, we identified 411 circRNAs that are significantly (p-value < 0.05) differentially expressed between asymptomatic individuals and NSCLC patients. Using the false discovery rate (FDR) of 0.05 as cutoff, we selected the nuclear receptor-interacting protein 1 (NRIP1) circRNA (circNRIP1) as a potential biomarker candidate for further validation by reverse transcription-quantitative PCR (RT-qPCR). This analysis was performed on an independent cohort of platelet samples. The RT-qPCR results confirmed the RNA-Seq data analysis, with significant downregulation of circNRIP1 in platelets derived from NSCLC patients. Our findings suggest that circRNAs found in blood platelets may hold diagnostic biomarkers potential for the detection of NSCLC using liquid biopsies.

Keywords: biomarkers; circular RNA; liquid biopsy; non-small cell lung cancer; platelets.

Conflict of interest statement

T.W. is a shareholder of GRAIL Inc. D.K.-L. is a shareholder of ExBiome BV.

Figures

Figure 1
Figure 1
Differential expression analysis of platelet-derived circRNAs distinguishes patients with NSCLC from asymptomatic individuals: (a) schematic representation of the workflow. Whole blood samples were subject to platelets isolation and total RNA extraction. Libraries were generated using SMARTer Stranded Total RNA-Seq Kit using N6-oligo primer lacking the oligo-dT primer. cDNA is sequenced using high-throughput paired-end sequencing on the Illumina HiSeq 4000 platform; (b) hierarchical clustering of differentially expressed circRNAs between NSCLC (n = 6; green) and asymptomatic individuals (control; n = 6; blue). Clustering was performed with PSO enhancement. Samples are indicated in the columns, circRNAs are indicated in the rows, and color intensity represents the Z score-transformed expression values; (c) volcano plot of differentially expressed circRNAs. The negative log of the p-value (base 10) is plotted on the Y-axis, and the log of the FC (base 2) is plotted on the X-axis. Red dots indicate significantly differentially expressed circRNAs (p-value < 0.05).
Figure 2
Figure 2
Validation of circNRIP1 expression in platelet-derived RNA. (a) Schematic illustration showing that circNRIP1 is formed by head-to-tail splicing of NRIP1 exon 2 and exon 3; (b) the expression of two circRNAs, NRIP1 and MAN1A2 in platelet samples derived from NSCLC patients (n = 23) and asymptomatic individuals (n = 24) was analyzed by RT-qPCR. The MAN1A2 circRNA was used as endogenous circRNA control for normalization as the “housekeeping gene”. Each sample was analyzed in triplicate. All data are presented as mean ± SEM. The 2−ΔΔCt method was used to calculate the relative expression of circNRIP1 between the different groups. For the statistical analysis, we used the unpaired nonparametric t-test with Welch correction with two-tailed p-value; (c) The expression level of circNRIP1 is significantly downregulated (p-value = 0.0302) in platelets of NSCLC patients, specifically in samples from patients diagnosed with late-stage disease (p-value = 0.0263, n = 12). Statistically non-significant (indicated as ns) downregulation is observed in patients with early stage NSCLC (p-value = 0.098, n = 11). * indicates p-value < 0.05.

References

    1. Kristensen L.S., Andersen M.S., Stagsted L.V.W., Ebbesen K.K., Hansen T.B., Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019;20:675–691. doi: 10.1038/s41576-019-0158-7.
    1. López-Jiménez E., Andres-Leon E. The Implications of ncRNAs in the Development of Human Disease. Noncoding RNA. 2021;7:17.
    1. Henry N.L., Hayes D.F. Cancer biomarkers. Mol. Oncol. 2012;6:140–146. doi: 10.1016/j.molonc.2012.01.010.
    1. Suzuki H., Zuo Y., Wang J., Zhang M.Q., Malhotra A., Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34:2345. doi: 10.1093/nar/gkl151.
    1. Jeck W.R., Sorrentino J.A., Wang K., Slevin M.K., Burd C.E., Liu J., Marzluff W.F., Sharpless N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–157. doi: 10.1261/rna.035667.112. Erratum in 2013, 19, 426.
    1. Enuka Y., Lauriola M., Feldman M.E., Sas-Chen A., Ulitsky I., Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2015;44:1370–1383. doi: 10.1093/nar/gkv1367.
    1. Rybak-Wolf A., Nilsson R.J., Wurdinger T. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell. 2014;58:870–885. doi: 10.1016/j.molcel.2015.03.027.
    1. Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak-Wolf A., Maier L., Mackowiak S., Gregersen L.H., Munschauer M., et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338. doi: 10.1038/nature11928.
    1. Yin Y., Long J., He Q., Li Y., Liao Y., He P., Zhu W. Emerging roles of circRNA in formation and progression of cancer. J. Cancer. 2019;10:5015–5021. doi: 10.7150/jca.30828.
    1. Lei B., Tian Z., Fan W., Ni B. Circular RNA: A novel biomarker and therapeutic target for human cancers. Int. J. Med. Sci. 2019;16:292–301. doi: 10.7150/ijms.28047.
    1. Debina Sarkar S.D.D. Circular RNAs: Potential Applications as Therapeutic Targets and Biomarkers in Breast Cancer. Non-Coding RNA. 2021;2:28.
    1. Micallef I., Baron B. The Mechanistic Roles of ncRNAs in Promoting and Supporting Chemoresistance of Colorectal Cancer. Non-Coding RNA. 2021;7:24. doi: 10.3390/ncrna7020024.
    1. Wang H., Ma J., Zhan X., Wang L. Circular RNA Circ-0067934 Attenuates Ferroptosis of Thyroid Cancer Cells by miR-545-3p. Front. Endocrinol. 2021;12:1–10.
    1. Wang Y., Xu R., Zhang D., Lu T., Yu W., Wo Y., Liu A., Sui T., Cui J., Qin Y., et al. Circ-ZKSCAN1 regulates FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to promote non-small cell lung cancer progression. Transl. Lung Cancer Res. 2019;8:862–875. doi: 10.21037/tlcr.2019.11.04.
    1. Li Y., Hu J., Li L., Cai S., Zhang H., Zhu X., Guan G., Dong X. Upregulated circular RNA circ_0016760 indicates unfavorable prognosis in NSCLC and promotes cell progression through miR-1287/GAGE1 axis. Biochem. Biophys. Res. Commun. 2018;503:2089–2094. doi: 10.1016/j.bbrc.2018.07.164.
    1. Qi Y., Zhang B., Wang J., Yao M. Upregulation of circular RNA hsa_circ_0007534 predicts unfavorable prognosis for NSCLC and exerts oncogenic properties in vitro and in vivo. Gene. 2018;676:79–85. doi: 10.1016/j.gene.2018.07.028.
    1. Jin M., Shi C., Yang C., Liu J., Huang G. Upregulated circRNA ARHGAP10 Predicts an Unfavorable Prognosis in NSCLC through Regulation of the miR-150-5p/GLUT-1 Axis. Mol. Ther. Nucleic Acids. 2019;18:219–231. doi: 10.1016/j.omtn.2019.08.016.
    1. Wen G., Zhou T., Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell. 2020;5:1–36. doi: 10.1007/s13238-020-00799-3.
    1. Wang M., Xie F., Lin J., Zhao Y., Zhang Q., Liao Z., Wei P. Diagnostic and Prognostic Value of Circulating CircRNAs in Cancer. Front. Med. 2021;8:1–14. doi: 10.3389/fmed.2021.649383.
    1. Tan S., Chien C.-S., Yarmishyn A., Wang X. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 2018;28:693–695. doi: 10.1038/s41422-018-0033-7.
    1. Liu X.-X., Yang Y.-E., Zhang M.-Y., Li R., Yin Y.-H., Qu Y.-Q. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J. Transl. Med. 2019;17:1–13. doi: 10.1186/s12967-019-1800-z.
    1. Hang D., Zhou J., Qin N., Zhou W., Ma H., Jin G., Hu Z., Dai J., Shen H. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7:2783–2791. doi: 10.1002/cam4.1514.
    1. Zhu X., Wang X., Wei S., Chen Y., Fan X., Han S., Wu G. hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017;284:2170–2182. doi: 10.1111/febs.14132.
    1. Luo Y.-H., Yang Y.-P., Chien C.-S., Yarmishyn A., Ishola A., Chien Y., Chen Y.-M., Huang T.-W., Lee K.-Y., Huang W.-C., et al. Plasma Level of Circular RNA hsa_circ_0000190 Correlates with Tumor Progression and Poor Treatment Response in Advanced Lung Cancers. Cancers. 2020;12:1740. doi: 10.3390/cancers12071740.
    1. Best M.G., Vancura A., Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J. Thromb. Haemost. 2017;15:1295–1306. doi: 10.1111/jth.13720.
    1. D’Ambrosi S., Nilsson R.J., Wurdinger T. Platelets and tumor-associated RNA transfer. Blood. 2021;137:3181–3191. doi: 10.1182/blood.2019003978.
    1. Neu C.T., Gutschner T., Haemmerle M. Post-Transcriptional Expression Control in Platelet Biogenesis and Function. Int. J. Mol. Sci. 2020;110:7614. doi: 10.3390/ijms21207614.
    1. Gutmann C., Zampetaki A., Mayr M. The Landscape of Coding and Non-coding RNAs in Platelets. Antioxid. Redox Signal. 2020;4:1–53.
    1. McAllister S.S., Weinberg R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 2014;16:717–727. doi: 10.1038/ncb3015.
    1. Best M.G., Keijser R., Min N., Poutsma A., Mulders J. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell. 2015;28:666–676. doi: 10.1016/j.ccell.2015.09.018.
    1. Best M.G., Sol N., Veld S.G.I., Vancura A., Muller M., Niemeijer A.-L.N., Fejes A.V., Fat L.-A.T.K., Veld A.E.H.I., Leurs C., et al. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets. Cancer Cell. 2017;32:238–252.e9. doi: 10.1016/j.ccell.2017.07.004.
    1. Sol N., Veld S.G.I., Vancura A., Tjerkstra M., Leurs C., Rustenburg F., Schellen P., Verschueren H., Post E., Zwaan K., et al. Tumor-Educated Platelet RNA for the Detection and (Pseudo)progression Monitoring of Glioblastoma. Cell Rep. Med. 2020;1:101. doi: 10.1016/j.xcrm.2020.100101.
    1. Heinhuis K., Veld S.I., Dwarshuis G., Broek D.V.D., Sol N., Best M., Koenen A., Steeghs N., Coevorden F., Haas R., et al. RNA-Sequencing of Tumor-Educated Platelets. A Novel Biomarker for Blood Based Sarcoma Diagnostics. Eur. J. Surg. Oncol. 2020;46:e7. doi: 10.1016/j.ejso.2019.11.013.
    1. Alhasan A.A., Izuogu O.G., Al-Balool H.H., Steyn J.S., Evans A., Colzani M., Ghevaert C., Mountford J.C., Marenah L., Elliott D., et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127:e1–e11. doi: 10.1182/blood-2015-06-649434.
    1. Preußer C., Hung L.-H., Schneider T., Schreiner S., Hardt M., Moebus A., Santoso S., Bindereif A. Selective release of circRNAs in platelet-derived extracellular vesicles. J. Extracell. Vesicles. 2018;7:1424473. doi: 10.1080/20013078.2018.1424473.
    1. Stencel K., Chmielewska I., Milanowski J., Ramlau R. Non-Small-Cell Lung Cancer: New Rare Targets—New Targeted Therapies—State of The Art and Future Directions. Cancers. 2021;13:1829. doi: 10.3390/cancers13081829.
    1. Sean T.H., Sean C.D., Knight B., Crosbie P.A., Balata H., Chudziak J. Progress and prospects of early detection in lung cancer. Open Biol. 2017;7:170070.
    1. Best M.G., In’t Veld S.G.J.G., Sol N., Wurdinger T. RNA sequencing and swarm intelligence—Enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA. Nat. Protoc. 2019;14:1206. doi: 10.1038/s41596-019-0139-5.
    1. Sabrkhany S., Kuijpers M.J., Verheul H.M., Egbrink M.G.O., Griffioen A.W. Optimal Human Blood Sampling for Platelet Research. Curr. Angiogenesis. 2013;2:157–161. doi: 10.2174/22115528113026660019.
    1. Sabrkhany S., Kuijpers M.J., van Kuijk S.M., Sanders L., Pineda S., Damink S.O., Dingemans A.-M.C., Griffioen A.W., Egbrink M.G.O. A combination of platelet features allows detection of early-stage cancer. Eur. J. Cancer. 2017;80:5–13. doi: 10.1016/j.ejca.2017.04.010.
    1. Oudejans C., Manders V., Visser A., Keijser R., Min N., Poutsma A., Mulders J., Berkmortel T.V.D., Wigman D.-J., Blanken B., et al. Circular RNA Sequencing of Maternal Platelets: A Novel Tool for the Identification of Pregnancy-Specific Biomarkers. Clin. Chem. 2021;67:508–517. doi: 10.1093/clinchem/hvaa249.
    1. You X., Conrad T. Acfs: Accurate circRNA identification and quantification from RNA-Seq data. Sci. Rep. 2016;6:38820. doi: 10.1038/srep38820.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.
    1. Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73.
    1. Nilsson R.J.A., Balaj L., Hulleman E., Van Rijn S., Pegtel D.M., Walraven M., Widmark A., Gerritsen W.R., Verheul H., Vandertop W.P., et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2011;118:3680–3683. doi: 10.1182/blood-2011-03-344408.
    1. Nilsson R.J.A., Karachaliou N., Berenguer J., Gimenez-Capitan A., Schellen P., Teixido C., Tannous J., Kuiper J.L., Drees E., Grabowska M., et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. 2016;7:1066–1075. doi: 10.18632/oncotarget.6279.
    1. Mohamad M.A., Manzor N.F.M., Zulkifli N.F., Zainal N., Hayati A.R., Asnawi A.W.A. A Review of Candidate Genes and Pathways in Preeclampsia—An Integrated Bioinformatical Analysis. Biology. 2020;9:62. doi: 10.3390/biology9040062.
    1. Brown J.R., Chinnaiyan A.M. The Potential of Circular RNAS as Cancer Biomarkers. Epidemiol. Biomark. Prev. 2020;29:2541–2555. doi: 10.1158/1055-9965.EPI-20-0796.
    1. Manders V., Visser A., Keijser R., Min N., Poutsma A., Mulders J., Berkmortel T.V.D., Hortensius M., Jongejan A., Pajkrt E., et al. The bivariate NRIP1/ZEB2 RNA marker permits non-invasive presymptomatic screening of pre-eclampsia. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-79008-4.
    1. Li X., Keijser R., Min N., Poutsma A., Mulders J. Circular RNA circNRIP1 promotes migration and invasion in cervical cancer by sponging miR-629-3p and regulating the PTP4A1/ERK1/2 pathway. Cell Death Dis. 2020;11:2782. doi: 10.1038/s41419-020-2607-9.
    1. Li M., Cai J., Han X., Ren Y. Downregulation of circNRIP1 Suppresses the Paclitaxel Resistance of Ovarian Cancer via Regulating the miR-211-5p/HOXC8 Axis. Cancer Manag. Res. 2020;12:9159–9171. doi: 10.2147/CMAR.S268872.
    1. Li T., Shi C., Yang C. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J. Mol. Med. 2018;96:85–96. doi: 10.1007/s00109-017-1600-y.
    1. Liu Y., Jiang Y., Xu L., Qu C., Zhang L., Xiao X., Chen W., Li K., Liang Q., Wu H. circ-NRIP1 Promotes Glycolysis and Tumor Progression by Regulating miR-186-5p/MYH9 Axis in Gastric Cancer. Cancer Manag. Res. 2020;12:5945–5956. doi: 10.2147/CMAR.S245941.
    1. Zhang X., Wang S., Wang H., Cao J., Huang X., Chen Z., Xu P., Sun G., Xu J., Lv J., et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer. 2021;40:1–24. doi: 10.1186/s12943-018-0935-5.
    1. Xu G., Li M., Wu J., Qin C., Tao Y., He H. Circular RNA circNRIP1 Sponges MicroRNA-138-5p to Maintain Hypoxia-Induced Resistance to 5-Fluorouracil Through HIF-1α-Dependent Glucose Metabolism in Gastric Carcinoma. Cancer Manag. Res. 2020;12:2789–2802. doi: 10.2147/CMAR.S246272.
    1. Buzás E.I., Tóth E., Sódar B.W., Szabó-Taylor K. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 2018;40:453–464. doi: 10.1007/s00281-018-0682-0.

Source: PubMed

3
구독하다