Macular Pigment Response to Lutein, Zeaxanthin, and Meso-zeaxanthin Supplementation in Open-Angle Glaucoma: A Randomized Controlled Trial

James Loughman, Ekaterina Loskutova, John S Butler, We Fong Siah, Colm O'Brien, James Loughman, Ekaterina Loskutova, John S Butler, We Fong Siah, Colm O'Brien

Abstract

Purpose: To evaluate macular pigment response to carotenoid supplementation in glaucomatous eyes.

Design: Double-masked, randomized, placebo-controlled clinical trial, the European Nutrition in Glaucoma Management Study (ClinicalTrials.gov identifier, NCT04460365).

Participants: Sixty-two participants (38 men, 24 women) with a diagnosis of open-angle glaucoma were enrolled. Forty-two were randomized to receive the active supplement, 20 participants were allocated to placebo.

Methods: Macular pigment optical density (MPOD) was measured by autofluorescence using the Heidelberg Spectralis scanning laser ophthalmoscope. Macular pigment optical density volume within the central 6° of retinal eccentricity as well as MPOD at 0.23°, 0.51°, 0.74°, and 1.02° were recorded at baseline and at 6-month intervals over 18 months. Visual function was assessed using visual acuity, mesopic and photopic contrast sensitivity under glare conditions, photo stress recovery time, microperimetry, and Glaucoma Activities Limitation 9 questionnaire. Advanced glaucoma module scans of retinal nerve fiber layer thickness and ganglion cell complex thickness over the central 6° of retinal eccentricity also were completed at each study visit.

Main outcome measures: Change in MPOD after supplementation with 10 mg lutein, 2 mg zeaxanthin, and 10 mg meso-zeaxanthin or placebo over 18 months.

Results: A mixed-model repeated measures analysis of variance revealed a statistically significant increase in MPOD volume (significant time effect: F(3,111) = 89.31, mean square error (MSE) = 1656.9; P < 0.01). Post hoc t tests revealed a significant difference in MPOD volume at each study visit for the treatment group (P < 0.01 for all), but no change in the placebo group (P > 0.05 for all). A statistically significant increase in mesopic contrast sensitivity under glare conditions was noted at 18 months in the treatment group, but not placebo. No other structural or functional changes were observed. No serious adverse events were noted during the trial.

Conclusions: Macular pigment can be augmented in glaucomatous eyes by supplementation with a formulation containing the carotenoids lutein, zeaxanthin, and meso-zeaxanthin. The greatest relative benefit was observed in those with the lowest baseline levels, but increases were noted across all participants and each retinal eccentricity. The potential benefits of MP augmentation for macular health in glaucoma merit further long-term evaluation.

Keywords: AMD, age-related macular degeneration; BMI, body mass index; CAREDS, Carotenoids in Age-Related Eye Disease Study; CS, contrast sensitivity; CSg, contrast sensitivity under glare; ENIGMA, European Nutrition in Glaucoma Management; GAL-9, Glaucoma Activities Limitation 9 questionnaire; GCC, ganglion cell complex; Glaucoma; HVF, Humphrey visual field; LZQ, Lutein and Zeaxanthin Questionnaire; Lutein; MD, mean deviation; MMSE, Mini-Mental State Examination; MP, macular pigment; MPOD; MPOD, macular pigment optical density; MSE, mean square error; Macular carotenoids; Macular pigment; Meso-zeaxanthin; OAG, open-angle glaucoma; RGC, retinal ganglion cell; RNFL, retinal nerve fiber layer; VA, visual acuity; VAR, visual acuity rating; Zeaxanthin; cpd, cycles per degree; dB, decibel; logCS, logarithm of contrast sensitivity units.

© 2021 by the American Academy of Ophthalmology.

Figures

Figure 1
Figure 1
Consolidated Standards of Reporting Trials flow diagram illustrating participant progress through the European Nutrition in Glaucoma Management trial. M = months.
Figure 2
Figure 2
A, Boxplot of macular pigment optical density (MPOD) volume illustrating MPOD values for the carotenoid treatment group (red) and the placebo group (green) for the baseline period (0m), 6 months (6m), 12 months (12m), and 18 months. Dots represent individual participant values at each time point. B, Line graph illustrating individual MPOD change for each participant in the active treatment group (left panel) and placebo treatment group (right panel).
Figure 3
Figure 3
Graph showing change in macular pigment optical density (MPOD) across retinal eccentricity (Ecc) in the carotenoid treatment group (upper) and placebo group (lower) over time. Error bars represent standard error of mean.
Figure 4
Figure 4
Scatterplot showing the percent change of macular pigment optical density (MPOD) volume after 18 months of carotenoid supplementation (treatment group) as a function of baseline MPOD volume.
Figure 5
Figure 5
Graph showing the change in mesopic contrast sensitivity (CS) under glare conditions during an 18-month period of supplementation with macular carotenoids (lutein 10 mg, zeaxanthin 2 mg, and meso-zeaxanthin 10 mg) or placebo. Data are presented as mean CS at each spatial frequency. Error bars represent standard error of the mean. cpd = cycles per degree.

References

    1. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma. JAMA. 2014;311(18):1901–1911.
    1. Hood D.C., Raza A.S., de Moraes C.G.V., et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.
    1. Noe G., Ferraro J., Lamoureux E., et al. Associations between glaucomatous visual field loss and participation in activities of daily living. Clin Exp Ophthalmol. 2003;31(6):482–486.
    1. Ramulu P. Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr Opin Ophthalmol. 2009;20(2):92–98.
    1. Friedman D.S., Freeman E., Munoz B., et al. Glaucoma and mobility performance. The Salisbury Eye Evaluation Project. Ophthalmology. 2007;114(12):2232–2237.
    1. Wood J.M., Black A.A., Mallon K., et al. Glaucoma and driving: on-road driving characteristics. PLoS One. 2016;11(7):e0158318. doi: 10.1371/journal.pone.0158318.
    1. Haymes S.A., LeBlanc R.P., Nicolela M.T., et al. Glaucoma and on-road driving performance. Invest Ophthalmol Vis Sci. 2008;49(7):3035–3041.
    1. Resnikoff S., Pascolini D., Etya’ale D., et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82(11):844–851.
    1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267.
    1. McKean-Cowdin R., Wang Y., Wu J., et al. Impact of visual field loss on health-related quality of life in glaucoma. Ophthalmology. 2008;115(6):941–948.e1.
    1. Quaranta L., Riva I., Gerardi C., et al. Quality of life in glaucoma: a review of the literature. Adv Ther. 2016;33(6):959–981.
    1. Ivers R.Q., Cumming R.G., Mitchell P., Attebo K. Visual impairment and falls in older adults: The Blue Mountains Eye Study. J Am Geriatr Soc. 1998;46(1):58–64.
    1. Haymes S.A., Leblanc R.P., Nicolela M.T., et al. Risk of falls and motor vehicle collisions in glaucoma. Invest Ophthalmol Vis Sci. 2007;48(3):1149–1155.
    1. Mabuchi F., Yoshimura K., Kashiwagi K., et al. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma. 2008;17(7):552–557.
    1. Bulut M., Yaman A., Erol M.K., et al. Cognitive performance of primary open-angle glaucoma and normal-tension glaucoma patients. Arq Bras Oftalmol. 2016;79(2):100–104.
    1. Maurano S.T.P., da Silva D.J., Ávila M.P., Magacho L. Cognitive evaluation of patients with glaucoma and its comparison with individuals with Alzheimer’s disease. Int Ophthalmol. 2018;38(5):1839–1844.
    1. Chung S.-D., Ho J.D., Chen C.H., et al. Dementia is associated with open-angle glaucoma: a population-based study. Eye (Lond) 2015;29(10):1340–1346.
    1. Su C.-W., Lin C.-C., Kao C.-H., Chen H.-Y. Association between glaucoma and the risk of dementia. Medicine (Baltimore) 2016;95(7)
    1. Trieschmann M., van Kuijk F.J.G.M., Alexander R., et al. Macular pigment in the human retina: histological evaluation of localization and distribution. Eye. 2008;22(1):132–137.
    1. Sabour-Pickett S., Beatty S., Connolly E., et al. Supplementation with three different macular carotenoid formulations in patients with early age-related macular degeneration. Retina. 2014;34(9):1757–1766.
    1. Scanlon G., Connell P., Ratzlaff M., et al. Macular pigment optical density is lower in type 2 diabetes, compared with type 1 diabetes and normal controls. Retina. 2015;35(9):1808–1816.
    1. Scanlon G., Loughman J., Farrell D., McCartney D. A review of the putative causal mechanisms associated with lower macular pigment in diabetes mellitus. Nutr Res Rev. 2019;32(2):247–264.
    1. Igras E., Loughman J., Ratzlaff M., et al. Evidence of lower macular pigment optical density in chronic open angle glaucoma. Br J Ophthalmol. 2013;97(8):994–998.
    1. Siah W.F., Loughman J., O’Brien C. Lower macular pigment optical density in foveal-involved glaucoma. Ophthalmology. 2015;122(10):2029–2037.
    1. Ji Y., Zuo C., Lin M., et al. Macular pigment optical density in Chinese primary open angle glaucoma using the one-wavelength reflectometry method. J Ophthalmol. 2016;2016:2792103.
    1. Liu X.H., Yu R Bin, Liu R., et al. Association between lutein and zeaxanthin status and the risk of cataract: a meta-analysis. Nutrients. 2014;6(1):452–465.
    1. Connolly E.E., Beatty S., Loughman J., et al. Supplementation with all three macular carotenoids: response, stability, and safety. Invest Ophthalmol Vis Sci. 2011;52(12):9207.
    1. Xu X., Zhang L., Shao B., et al. Safety evaluation of meso-zeaxanthin. Food Control. 2013;32(2):678–686.
    1. Johnson E., Rasmussen H., Burnett D.J., Registered T.(C. TU. LZQ: a dietary questionnaire for lutein and zeaxanthin. 2009. Available at: Accessed 07.01.17.
    1. Nelson P., Aspinall P., Papasouliotis O., et al. Quality of life in glaucoma and its relationship with visual function. J Glaucoma. 2003;12(2):139–150.
    1. Obana A., Gellermann W., Gohto Y., et al. Reliability of a two-wavelength autofluorescence technique by Heidelberg Spectralis to measure macular pigment optical density in Asian subjects. Exp Eye Res. 2018;168:100–106.
    1. Loskutova E., Butler J.S., Hernandez Martinez G., et al. Macular pigment optical density fluctuation as a function of pupillary mydriasis: methodological considerations for dual-wavelength autofluorescence. Curr Eye Res. 2020. 2021;46(4):532–538.
    1. Siah W.F., O’Brien C., Loughman J.J. Macular pigment is associated with glare-affected visual function and central visual field loss in glaucoma. Br J Ophthalmol. 2018;102(7):929–935.
    1. Burd J., Lum S., Cahn F., Ignotz K. Simultaneous noninvasive clinical measurement of lens autofluorescence and Rayleigh scattering using a fluorescence biomicroscope. J Diabetes Sci Technol. 2012;6(6):1251–1259.
    1. Cahn F., Burd J., Ignotz K., Mishra S. Measurement of lens autofluorescence can distinguish subjects with diabetes from those without. J Diabetes Sci Technol. 2014;8(1):43–49.
    1. Siik S., Chylack L.T., Friend J., et al. Lens autofluorescence and light scatter in relation to the lens opacities classification system, LOCS III. Acta Ophthalmol Scand. 1999;77(5):509–514.
    1. Akuffo K.O., Nolan J.M., Stack J., et al. The impact of cataract, and its surgical removal, on measures of macular pigment using the Heidelberg Spectralis HRA+OCT MultiColor device. Invest Ophthalmol Vis Sci. 2016;57(6):2552.
    1. Erdfelder E., Faul F., Buchner A. GPOWER: a general power analysis program. Behav Res Methods Instrum Comput. 1996;28(1):1–11.
    1. Lawrence M. Package “ez.” R Top Doc. Available at: 2016. Accessed January 18, 2021.
    1. Wickham H. Springer International Publishing; Cham, Switzerland: 2016. Ggplot2. Elegant Graphics for Data Analysis.
    1. Richer S.P., Stiles W., Graham-Hoffman K., et al. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: The Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973. Optometry. 2011;82(11):667–680.e6.
    1. Murray I.J., Makridaki M., van der Veen R.L.P., et al. Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study. Invest Ophthalmol Vis Sci. 2013;54(3):1781–1788.
    1. Loughman J., Nolan J.M., Howard A.N., et al. The impact of macular pigment augmentation on visual performance using different carotenoid formulations. Invest Ophthalmol Vis Sci. 2012;53(12):7871–7880.
    1. Ma L., Liu R., Du J.H., et al. Lutein, zeaxanthin and meso-zeaxanthin supplementation associated with macular pigment optical density. Nutrients. 2016;8(7):426.
    1. Akuffo K.O., Beatty S., Peto T., et al. The impact of supplemental antioxidants on visual function in nonadvanced age-related macular degeneration: a head-to-head randomized clinical trial. Invest Ophthalmol Vis Sci. 2017;58(12):5347.
    1. Daga F.B., Ogata N.G., Medeiros F.A., et al. Macular pigment and visual function in patients with glaucoma: The San Diego Macular Pigment Study. Invest Ophthalmol Vis Sci. 2018;59(11):4471–4476.
    1. Liu Y., Lawler T., Liu Z., et al. Low macular pigment levels are associated with manifest primary open-angle glaucoma in the Carotenoids in Age-Related Eye Disease Study Author Block. Invest Ophthalmol Vis Sci. 2021;62(8):1582.
    1. Wegner A., Khoramnia R. Cataract is a self-defence reaction to protect the retina from oxidative damage. Med Hypotheses. 2011;76(5):741–744.
    1. Flammer J., Haefliger I.O., Orgül S., Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8(3):212–219.
    1. Loskutova E., Nolan J., Howard A., Beatty S. Macular pigment and its contribution to vision. Nutrients. 2013;5(6):1962–1969.
    1. Loughman J., Davison P.A., Nolan J.M., et al. Macular pigment and its contribution to visual performance and experience. J Optom. 2010;3(2):74–90.
    1. Ozawa Y., Sasaki M., Takahashi N., et al. Neuroprotective effects of lutein in the retina. Curr Pharm Des. 2012;18(1):51–56.
    1. Bernstein P.S., Li B., Vachali P.P., et al. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34–66.
    1. Chang E.E., Goldberg J.L. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–986.
    1. Lawler T., Liu Y., Christensen K., et al. Dietary antioxidants, macular pigment, and glaucomatous neurodegeneration: a review of the evidence. Nutrients. 2019;11(5):1002.
    1. Izzotti A., Saccà S.C., Cartiglia C., De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med. 2003;114(8):638–646.
    1. Saccà S.C., Pascotto A., Camicione P., et al. Oxidative DNA damage in the human trabecular meshwork: clinical correlation in patients with primary open-angle glaucoma. Arch Ophthalmol. 2005;123(4):458–463.
    1. Ganapathy P.S., White R.E., Ha Y., et al. The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2011;52(8):5515–5524.
    1. Li G.-Y., Fan B., Su G.-F. Acute energy reduction induces caspase-dependent apoptosis and activates p53 in retinal ganglion cells (RGC-5) Exp Eye Res. 2009;89(4):581–589.
    1. Moreno M.C., Campanelli J., Sande P., et al. Retinal oxidative stress induced by high intraocular pressure. Free Radic Biol Med. 2004;37(6):803–812.
    1. Vohra R., Tsai J.C., Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol. 2013;58(4):311–320.
    1. Agudo M., Perez-Marin M.C., Sobrado-Calvo P., et al. Immediate upregulation of proteins belonging to different branches of the apoptotic cascade in the retina after optic nerve transection and optic nerve crush. Invest Ophthalmol Vis Sci. 2009;50(1):424.
    1. Wooten B.R., Hammond B.R. Macular pigment: influences on visual acuity and visibility. Prog Retin Eye Res. 2002;21(2):225–240.
    1. Krinsky N.I., Landrum J.T., Bone R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171–201.
    1. Nelson P., Aspinall P., O’Brien C. Patients’ perception of visual impairment in glaucoma: a pilot study. Br J Ophthalmol. 1999;83(5):546–552.
    1. Beatty S., Chakravarthy U., Nolan J.M., et al. Secondary outcomes in a clinical trial of carotenoids with coantioxidants versus placebo in early age-related macular degeneration. Ophthalmology. 2013;120(3):600–606.
    1. Trieschmann M., Beatty S., Nolan J.M., et al. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study. Exp Eye Res. 2007;84(4):718–728.
    1. Stringham J.M., O’Brien K.J., Stringham N.T. Macular carotenoid supplementation improves disability glare performance and dynamics of photostress recovery. Eye Vis. 2016;3(1):30.
    1. Stringham J.M., Hammond B.R. Macular pigment and visual performance under glare conditions. Optom Vis Sci. 2008;85(2):82–88.
    1. Loskutova E., O’Brien C., Loskutov I., Loughman J. Nutritional supplementation in the treatment of glaucoma: a systematic review. Surv Ophthalmol. 2019;64(2):195–216.
    1. Spry P.G., Johnson C.A. Identification of progressive glaucomatous visual field loss. Surv Ophthalmol. 2002;47(2):158–173.
    1. Wu Z., Saunders L.J., Daga F.B., et al. Frequency of testing to detect visual field progression derived using a longitudinal cohort of glaucoma patients. Ophthalmology. 2017;124(6):786–792.
    1. Chauhan B.C., Garway-Heath D.F., Goni F.J., et al. Practical recommendations for measuring rates of visual field change in glaucoma. Br J Ophthalmol. 2008;92(4):569–573.
    1. Krupin T., Liebmann J.M., Greenfield D.S., et al. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151(4):671–681.

Source: PubMed

3
구독하다