l-Glutamine Attenuates DSS-Induced Colitis via Induction of MAPK Phosphatase-1

Soo-Yeon Jeong, Yoo Na Im, Ji Young Youm, Hern-Ku Lee, Suhn-Young Im, Soo-Yeon Jeong, Yoo Na Im, Ji Young Youm, Hern-Ku Lee, Suhn-Young Im

Abstract

Inflammatory bowel disease (IBD), encompassing ulcerative colitis and Crohn's disease, is a multifactorial inflammatory disease of the small intestine and colon. Many investigators have reported that l-glutamine (Gln) therapy improves outcomes of experimental colitis models, although the mechanism is not fully understood. Regarding the anti-inflammatory properties of Gln, we have shown that Gln can effectively deactivate cytosolic phospholipase A₂ (cPLA₂) by rapid induction of MAPK phosphatase (MKP)-1. In this study, we explore the possibility that Gln ameliorates dextran sulfate sodium (DSS)-induced colitis via MKP-1 induction, resulting in inhibition of cPLA₂, which has been reported to play a key role in the pathogenesis of IBD. Oral Gln intake attenuated DSS-induced colitis. Gln inhibited cPLA₂ phosphorylation, as well as colonic levels of TNF-α and leukotriene (LT)B₄. Gln administration resulted in early and enhanced MKP-1 induction. Importantly, MKP-1 small interfering RNA (siRNA), but not control siRNA, significantly abrogated the Gln-mediated (1) induction of MKP-1; (2) attenuation of colitis (colon length, histological abnormality, and inflammation; and (3) inhibition of cPLA₂ phosphorylation and colonic levels of TNF-α and LTB₄. These data indicated that Gln ameliorated DSS-induced colitis via MKP-1 induction.

Keywords: DSS; MKP-1; cPLA2; glutamine; inflammatory bowel disease.

Conflict of interest statement

The authors declare that there is no conflict of interests.

Figures

Figure 1
Figure 1
Oral l-glutamine (Gln) intake improves DSS-induced acute colitis. (A) Disease severity; (B) the colon length on day 5; (C) histological examination on day 5; (D) histological score; (E,F) colonic levels of TNF-α and LTB4 at 24 h; Data in (A,E,F) represent the means ± SEM of three independent experiments (n = 5 mice/group/time point); (BD) A representative from three independent experiments (n = 3 mice/group/time point) is shown. Scale bar = 50 μm. * p < 0.001 vs. vehicle group; ** p < 0.05 vs. DSS group in (A,DF).
Figure 2
Figure 2
Gln enhances MKP-1 induction in colitis. (A,B) Immunoblot analysis of MKP-1. Data are representative of three independent experiments (n = 3 mice/group/time point). * p < 0.05, ** p < 0.01 vs. DSS only group in (A); * p < 0.05 vs. DSS + Gln group in (B).
Figure 3
Figure 3
Gln ameliorates colitis via MKP-1 induction. (A) Disease severity; (B) the colon length on day 5; (C) histological examination on day 5; (D) histological score; (E,F) colonic levels of TNF-α and LTB4; Data in (A,E,F) represent the means ± SEM of three independent experiments (n = 5 mice/group/time point); (B,C) A representative from three independent experiments (n = 3 mice/group/time point) is shown. Scale bar = 50 μm. * p < 0.001 vs. vehicle group; ** p < 0.05 vs. DSS group; #p < 0.05 vs. DSS + Gln group in (A,DF).
Figure 4
Figure 4
cPLA2 inhibition is associated with the beneficial effect of Gln. (A,B) Immunoblot analysis of cPLA2 phosphorylation; (C) disease severity; (D) histological abnormality; (E) histological score; (F) colon length; colonic levels of TNF-α (G) and LTB4 (H); (A,B) A representative of three independent experiments (n = 3 mice/group/time point). * p < 0.05 vs. DSS only group in (A); * p < 0.05 vs. DSS + Gln group in (B); Data in (C,G,H) represent the means ± SEM of three independent experiments (n = 5 mice/group/time point); (DF) A representative from three independent experiments (n = 3 mice/group/time point) is shown. Scale bar = 50 μm. * p < 0.001 vs. vehicle group; ** p < 0.05 vs. DSS group in (C,E,G,H).
Figure 5
Figure 5
Anti-inflammatory action mechanisms of Gln. Gln binds to G-protein coupled receptors (GPCRs), an allosteric receptor, (unpublished data), and increases ERK activity via activation of the pathway involving Ca2+/Ras/c-Raf/MEK (ERK cascade) [41]. ERK phosphorylates MKP-1 on two carboxyl-terminal serine residues—serine 359 and serine 364, which enhances MKP-1 stabilization, resulting in the early induction of MKP-1 [20]. MKP-1 deactivates cPLA2 either by dephosphorylating p38 [20,23], which is a major upstream pathway for cPLA2 phosphorylation, or by directly dephosphorylating cPLA2 due to enhanced physical interaction between Gln-induced MKP-1 and cPLA2 [24]. Deactivation of p38 and cPLA2 results in suppression of many cardinal inflammatory mediators including reactive oxygen species.

References

    1. Buhner S., Buning C., Genschel J., Kling K., Herrmann D., Dignass A., Kuechler I., Krueger S., Schmidt H.H., Lochs H. Genetic basis for increased intestinal permeability in families with Crohn’s disease: Role of CARD15 3020insC mutation? Gut. 2006;55:342–347. doi: 10.1136/gut.2005.065557.
    1. Wehkamp J., Salzman N.H., Porter E., Nuding S., Weichenthal M., Petras R.E., Shen B., Schaeffeler E., Schwab M., Linzmeier R., et al. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc. Natl. Acad. Sci. USA. 2005;102:18129–18134. doi: 10.1073/pnas.0505256102.
    1. Cobrin G.M., Abreu M.T. Defects in mucosal immunity leading to Crohn’s disease. Immunol. Rev. 2005;206:277–295. doi: 10.1111/j.0105-2896.2005.00293.x.
    1. Xavier R.J., Podolsky D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434. doi: 10.1038/nature06005.
    1. Darfeuille-Michaud A., Boudeau J., Bulois P., Neut C., Glasser A.L., Barnich N., Bringer M.A., Swidsinski A., Beaugerie L., Colombel J.F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–421. doi: 10.1053/j.gastro.2004.04.061.
    1. Hoivik M.L., Moum B., Solberg I.C., Cvancarova M., Hoie O., Vatn M.H., Bernklev T. IBSEN Study Group, Health-related quality of life in patients with ulcerative colitis after a 10-year disease course: Results from the IBSEN study. Inflamm. Bowel Dis. 2012;18:1540–1549. doi: 10.1002/ibd.21863.
    1. Ghosh S., Mitchell R. Impact of inflammatory bowel disease on quality of life: Results of the European Federation of Crohn’s and Ulcerative Colitis Associations (EFCCA) patient survey. J. Crohns Colitis. 2007;1:10–20. doi: 10.1016/j.crohns.2007.06.005.
    1. Wang W.W., Qiao S.Y., Li D.F. Amino acids and gut function. Amino Acids. 2008;37:105–110. doi: 10.1007/s00726-008-0152-4.
    1. Windmueller H.G. Glutamine utilization by the small intestine. Adv. Enzymol. 1982;53:202–237.
    1. Windmueller H.G., Spaeth A.E. Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 1980;249:5070–5079. doi: 10.1111/j.1753-4887.1990.tb02968.x.
    1. Souba W.W., Klimberg V.S., Plumley D.A., Salloum R.M., Flynn T.C., Bland K.I., Copeland E.M., II The role of glutamine in maintaining the gut and supporting the metabolic response to injury and infection. J. Surg. Res. 1990;48:383–391. doi: 10.1016/0022-4804(90)90080-L.
    1. Roediger W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83:424–429.
    1. Jacobs D.O., Evans D.A., O’Dwyer S.T., Smith R.J., Wilmore D.W. Disparate effect of fluorouracil on the ileum and colon of enterally fed rats with protection by dietary glutamine. Surg. Forum. 1987;38:45–49.
    1. Lai Y.N., Yeh S.L., Lin M.T., Shang H.F., Yeh C.L., Chen W.J. Glutamine supplementation enhances mucosal immunity in rats with Gut-Derived sepsis. Nutrition. 2004;20:286–291. doi: 10.1016/j.nut.2003.11.015.
    1. Vicario M., Amat C., Rivero M., Moretó M., Pelegrí C. Dietary glutamine affects mucosal functions in rats with mild DSS-induced colitis. J. Nutr. 2007;137:1931–1937. doi: 10.1093/jn/137.8.1931.
    1. Kaya E., Gür E.S., Ozgüç H., Bayer A., Tokyay R. l-glutamine enemas attenuate mucosal injury in experimental colitis. Dis. Colon Rectum. 1999;42:1209–1215. doi: 10.1007/BF02238577.
    1. Crespo I., San-Miguel B., Prause C., Marroni N., Cuevas M.J., González-Gallego J., Tuñón M.J. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS ONE. 2012;7:e50407. doi: 10.1371/journal.pone.0050407.
    1. Fillmann H., Kretzmann N.A., San-Miguel B., Llesuy S., Marroni N., González-Gallego J., Tuñón M.J. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor κB pathway in an experimental model of colitis in the rat. Toxicology. 2007;236:217–226. doi: 10.1016/j.tox.2007.04.012.
    1. Funakoshi T., Yamashita K., Ichikawa N., Fukai M., Suzuki T., Goto R., Oura T., Kobayashi N., Katsurada T., Ichihara S., et al. A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. J. Crohns Colitis. 2012;6:215–225. doi: 10.1016/j.crohns.2011.08.011.
    1. Ko H.M., Oh S.H., Bang H.S., Kang N.I., Cho B.H., Im S.Y., Lee H.K. Glutamine protects mice from lethal endotoxic shock via a rapid induction of MAPK phosphatase-1. J. Immunol. 2009;182:7957–7962. doi: 10.4049/jimmunol.0900043.
    1. Franklin C.C., Kraft A.S. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J. Biol. Chem. 1997;272:16917–16923. doi: 10.1074/jbc.272.27.16917.
    1. Hammer M., Mages J., Dietrich H., Servatius A., Howells N., Cato A.C., Lang R. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J. Exp. Med. 2006;203:15–20. doi: 10.1084/jem.20051753.
    1. Lee C.H., Kim H.K., Kim J.M., Ayush O., Im S.Y., Oh D.K., Lee H.K. Gutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A(2) via an induction of MAPK phosphatase-1. J. Immunol. 2012;189:5139–5146. doi: 10.4049/jimmunol.1201599.
    1. Lee C.H., Kim H.K., Jeong J.S., Lee Y.D., Jin Z.W., Im S.Y., Lee H.K. Mechanism of glutamine inhibition of cytosolic phospholipase A2 (cPLA2): Evidence of physical interaction between glutamine-Induced mitogen-activated protein kinase phosphatase-1 and cPLA2. Clin. Exp. Immunol. 2015;180:571–580. doi: 10.1111/cei.12585.
    1. Leslie C.C. Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell Biol. 2004;82:1–17. doi: 10.1139/o03-080.
    1. Samuelsson B., Dhalen S.-E., Lindgren J.A., Rouzer C.A., Serhan C.N. Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects. Science. 1987;237:1171–1176. doi: 10.1126/science.2820055.
    1. Niknami M., Patel M., Witting P.K., Dong Q. Molecules in focus: Cytosolic phospholipase A2-α. Int. J. Biochem. Cell Boil. 2009;41:994–997. doi: 10.1016/j.biocel.2008.07.017.
    1. Rosengarten M., Hadad N., Solomonov Y., Lamprecht S., Levy R. Cytosolic phospholipase A2 α has a crucial role in the pathogenesis of DSS-induced colitis in mice. Eur. J. Immunol. 2016;46:400–408. doi: 10.1002/eji.201545848.
    1. Cooper H.S., Murthy S.N., Shah R.S., Sedergran D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Investig. 1993;69:238–249.
    1. Dieleman L.A., Palmen M.J., Akol H., Bloemena E., Peña A.S., Meuwissen S.G., Van Rees E.P. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin. Exp. Immunol. 1998;114:385–391. doi: 10.1046/j.1365-2249.1998.00728.x.
    1. Bjork J., Hedqvist P., Arfors K.E. Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes. Inflammation. 1982;6:189–200. doi: 10.1007/BF00916243.
    1. Di Gennaro A., Kenne E., Wan M., Soehnlein O., Lindbom L., Haeggström J.Z. Leukotriene B4-induced changes in vascular permeability are mediated by neutrophil release of heparin-binding protein (HBP/CAP37/azurocidin) FASEB J. 2009;23:1750–1757. doi: 10.1096/fj.08-121277.
    1. Chi H., Barry S.P., Roth R.J., Wu J.J., Jones E.A., Bennett A.M., Flavell R.A. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc. Natl. Acad. Sci. USA. 2006;103:2274–2279. doi: 10.1073/pnas.0510965103.
    1. Kyriakis J.M., Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001;81:807–869. doi: 10.1152/physrev.2001.81.2.807.
    1. Orlowski R.Z., Small G.W., Shi Y.Y. Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. J. Biol. Chem. 2002;277:27864–27871. doi: 10.1074/jbc.M201519200.
    1. Keyse S.M., Emslie E.A. Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992;359:644–647. doi: 10.1038/359644a0.
    1. Franklin C.C., Srikanth S., Kraft A.S. Conditional expression of mitogen-activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Proc. Natl. Acad. Sci. USA. 1998;95:3014–3019. doi: 10.1073/pnas.95.6.3014.
    1. Wang Z., Xu J., Zhou J.Y., Liu Y., Wu G.S. Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res. 2006;66:8870–8877. doi: 10.1158/0008-5472.CAN-06-1280.
    1. Chattopadhyay S., Machado-Pinilla R., Manguan-Garcia C., Belda-Iniesta C., Moratilla C., Cejas P., Fresno-Vara J.A., de Castro-Carpeno J., Casado E., Nistal M., et al. MKP1/CL100 controls tumor growth and sensitivity to cisplatin in non-small-cell lung cancer. Oncogene. 2006;25:3335–3345. doi: 10.1038/sj.onc.1209364.
    1. Wang J., Yin D.P., Liu Y.X., Baer R., Yin Y. Dual specificity phosphatase 1/CL100 is a direct transcriptional target of E2F-1 in the apoptotic response to oxidative stress. Cancer Res. 2007;67:6737–6744. doi: 10.1158/0008-5472.CAN-06-4402.
    1. Li J., Gorospe M., Hutter D., Barnes J., Keyse S.M., Liu Y. Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol. Cell Biol. 2001;21:8213–8224. doi: 10.1128/MCB.21.23.8213-8224.2001.
    1. Brondello J.M., Pouyssegur J., McKenzie F.R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 1999;286:2514–2517. doi: 10.1126/science.286.5449.2514.
    1. Lin Y.W., Yang J.L. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J. Biol. Chem. 2006;281:915–926. doi: 10.1074/jbc.M508720200.
    1. Ayush O., Jin Z.W., Kim H.K., Shin Y., Im S.Y., Lee H.K. Glutamine up-regulates MAPK phosphatase-1 induction via activation of Ca2+→ERK cascade pathway. Biochem. Biophys. Rep. 2016;7:10–19.
    1. Sklyarov A.Y., Panasyuk N.B., Fomenko I.S. Role of nitric oxide-synthase and cyclooxygenase/lipooxygenase systems in development of experimental ulcerative colitis. J. Physiol. Pharmacol. 2011;62:65–73.
    1. Wang D., Dubois R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29:781–788. doi: 10.1038/onc.2009.421.
    1. Su B., Karin M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Opin. Immunol. 1996;8:402–411. doi: 10.1016/S0952-7915(96)80131-2.
    1. Shmelzer Z., Karter M., Eisenstein M., Leto T.L., Hadad N., Ben-Menahem D., Gitler D., Banani S., Wolach B., Rotem M., et al. Cytosolic phospholipase A2α is targeted to the p47phox-PX domain of the assembled NADPH oxidase via a novel binding site in its C2 domain. J. Biol. Chem. 2008;283:31898–31908. doi: 10.1074/jbc.M804674200.
    1. Kukreja R.C., Kontos H.A., Hess M.L., Ellis E.F. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ. Res. 1986;59:612–619. doi: 10.1161/01.RES.59.6.612.
    1. Laurent B., Raymond A. Reactive oxygen species: Production and role in the kidney. Am. J. Physiol. 1986;251:F765–F776.
    1. Okabe E., Kato Y., Kohno H., Hess M.L., Ito H. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of the effect of acidosis on calcium transport by masseter muscle sarcoplasmic reticulum. Biochem. Pharmacol. 1985;34:961–968. doi: 10.1016/0006-2952(85)90597-0.
    1. Wei E.P., Kontos H.A., Dietrich W.D., Povlishock J.T., Ellis E.F. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats. Circ. Res. 1981;48:95–103. doi: 10.1161/01.RES.48.1.95.
    1. Morgan M.J., Liu Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–115. doi: 10.1038/cr.2010.178.

Source: PubMed

3
구독하다