Clinical Significance of Germline Cancer Predisposing Variants in Unselected Patients with Pancreatic Adenocarcinoma

Elena Fountzilas, Alexia Eliades, Georgia-Angeliki Koliou, Achilleas Achilleos, Charalambos Loizides, Kyriakos Tsangaras, Dimitrios Pectasides, Joseph Sgouros, Pavlos Papakostas, Grigorios Rallis, Amanda Psyrri, Christos Papadimitriou, Georgios Oikonomopoulos, Konstantinos Ferentinos, Anna Koumarianou, George Zarkavelis, Christos Dervenis, Gerasimos Aravantinos, Dimitrios Bafaloukos, Paris Kosmidis, George Papaxoinis, Maria Theochari, Ioannis Varthalitis, Nikolaos Kentepozidis, Georgios Rigakos, Zacharenia Saridaki, Adamantia Nikolaidi, Athina Christopoulou, Florentia Fostira, Epaminontas Samantas, Elena Kypri, Marios Ioannides, George Koumbaris, George Fountzilas, Philippos C Patsalis, Elena Fountzilas, Alexia Eliades, Georgia-Angeliki Koliou, Achilleas Achilleos, Charalambos Loizides, Kyriakos Tsangaras, Dimitrios Pectasides, Joseph Sgouros, Pavlos Papakostas, Grigorios Rallis, Amanda Psyrri, Christos Papadimitriou, Georgios Oikonomopoulos, Konstantinos Ferentinos, Anna Koumarianou, George Zarkavelis, Christos Dervenis, Gerasimos Aravantinos, Dimitrios Bafaloukos, Paris Kosmidis, George Papaxoinis, Maria Theochari, Ioannis Varthalitis, Nikolaos Kentepozidis, Georgios Rigakos, Zacharenia Saridaki, Adamantia Nikolaidi, Athina Christopoulou, Florentia Fostira, Epaminontas Samantas, Elena Kypri, Marios Ioannides, George Koumbaris, George Fountzilas, Philippos C Patsalis

Abstract

Our aim was to determine the prevalence, prognostic and predictive role of germline pathogenic/likely pathogenic variants (P/LPVs) in cancer predisposing genes in patients with pancreatic ductal adenocarcinoma (PDAC). Germline testing of 62 cancer susceptibility genes was performed on unselected patients diagnosed from 02/2003 to 01/2020 with PDAC, treated at Hellenic Cooperative Oncology Group (HeCOG)-affiliated Centers. The main endpoints were prevalence of P/LPVs and overall survival (OS). P/LPVs in PDAC-associated and homologous recombination repair (HRR) genes were identified in 22 (4.0%) and 42 (7.7%) of 549 patients, respectively. P/LPVs were identified in 16 genes, including ATM (11, 2.0%) and BRCA2 (6, 1.1%), while 19 patients (3.5%) were heterozygotes for MUTYH P/LPVs and 9 (1.6%) carried the low-risk allele, CHEK2 p.(Ile157Thr). Patients carrying P/LPVs had improved OS compared to non-carriers (22.6 vs. 13.9 months, p = 0.006). In multivariate analysis, there was a trend for improved OS in P/LPV carriers (p = 0.063). The interaction term between platinum exposure and mutational status of HRR genes was not significant (p-value = 0.35). A significant proportion of patients with PDAC carries clinically relevant germline P/LPVs, irrespectively of age, family history or disease stage. The predictive role of these P/LPVs has yet to be defined. ClinicalTrials.gov Identifier: NCT03982446.

Keywords: BRCA2; inherited; overall survival; predictive; prognostic.

Conflict of interest statement

E.F.: Stock ownership: GENPREX INC, ARIAD, Deciphera Pharmaceuticals, Inc. Travel grant: Merck, Pfizer, and K.A.M Oncology/Hematology. Advisory: LEO Pharma. Speaker fees: Roche, Pfizer; AE: Employed by NIPD Genetics; has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1). A.A.: Employed by NIPD Genetics; has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1); has filed a PCT patent application for the Enrichment of Targeted Genomic Regions for Multiplexed Parallel Analysis (WO2019/008148A9). C.L.: Employed by NIPD Genetics. K.T.: Employed by NIPD Genetics, has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1), has filed a PCT patent application for the Enrichment of Targeted Genomic Regions for Multiplexed Parallel Analysis (WO2019/008148A9). D.P.: Advisory Role: Roche, MSD, Astellas. Honoraria: Roche, MSD, Astellas. P.P.: Advisory Role: Roche, Merck, Genesis Pharmaceuticals, Honoraria: Roche, Merck. A.P.: Consultation Fees: Amgen, Merck Serono, Roche, BMS, Astra Zeneca, MSD. Honoraria: Amgen, Merck Serono, Roche, BMS, Astra Zeneca, MSD, Research funds: BMS, Kura. C.P.: Speaker honoraria and honoraria for consultancy in advisory boards: Novartis, AstraZeneca, Genesis, MSD, Amgen, Pfizer, Merck, Roche; Research grants: BMS, Roche. A.K.: Advisory Role: Genesis Pharma. Honoraria: Pfizer. Speaker’s bureau: Roche, Research Funding: Merck, Travel: MSD, Educational grants: Novartis, Pfizer, Merck, Roche, BMS, MSD, Genesis, and Ipsen. G.A.: Advisory Boards: Novartis, BMS, Roche Hellas, Astra Zeneca, Sanofi, Amgen, Genesis Pharma, Merck, Pfizer; PK: Honoraria: Novartis, MSD, Pfizer. Travel: Pfizer, MSD, Genesis. A.N.: Advisory Board and Speaker fees: Pfizer, Novartis. E.S.: Advisory Board of Merck, MSD, Asta-Zeneca, Roche, Amgen and Genesis. E.K.: Employed by NIPD Genetics; has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1); has filed a PCT patent application for the Enrichment of Targeted Genomic Regions for Multiplexed Parallel Analysis (WO2019/008148A9). M.I.: Employed by NIPD Genetics; has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1), has filed a PCT patent application for the Enrichment of Targeted Genomic Regions for Multiplexed Parallel Analysis (WO2019/008148A9). G.K.: Employed by NIPD Genetics; has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1); has filed a PCT patent application for the Enrichment of Targeted Genomic Regions for Multiplexed Parallel Analysis (WO2019/008148A9). G.F.: Advisory Board: Pfizer, Sanofi and Roche. Honoraria: Astra Zeneca. Stock ownership: ARIAD and GENPREX. P.C.P.: Employed by NIPD Genetics; has filed a PCT patent application for the Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers (WO2019/008172A1); has filed a PCT patent application for the Enrichment of Targeted Genomic Regions for Multiplexed Parallel Analysis (WO2019/008148A9); The rest of the authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Prevalence of P/LPVs in 549 patients of the study. Single nucleotide variants (SNV), insertions/deletions (Indels) and copy number variant (CNV) detection was performed for the following genes: APC, ATM, BAP1, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, (CDKN2Ap16(INK4A), CDKN2Ap14(ARF)), CHEK2, DDB2, DICER1, EPCAM, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, GREM1, HOXB13, MEN1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, POLD1, POLE, POLH, PTEN, RAD50, RAD51C, RAD51D, RB1, RET, SDHAF2, SDHB, SDHC, SDHD, SLX4, SMAD4, SMARCA4, STK11, TP53, VHL, XPA, XPC. Overall, 62 patients (11.3%) carried ≥1 P/LPV in at least 1 of 16 genes. Three patients carried two P/LPVs; two carried P/LPVs in CHEK2 and MUTYH and one in BRCA1 and MUTYH. The rest of the patients (59) had one P/LPV detected. The percentage of patients carrying a P/LPV in each gene is shown on top of each bar.
Figure 2
Figure 2
Overall survival (OS) in patients with and without P/LPVs; analysis was performed in 540 patients with available outcome data.

References

    1. Iqbal J., Ragone A.V., Lubinski J., Lynch H.T., Moller P., Ghadirian P., Foulkes W.D., Armel S., Eisen A.Z., Neuhausen S.L., et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br. J. Cancer. 2012;107:2005–2009. doi: 10.1038/bjc.2012.483.
    1. Zhen D.B., Rabe K.G., Gallinger S., Syngal S., Schwartz A.G., Goggins M.G., Hruban R.H., Cote M.L., McWilliams R.R., Roberts N.J., et al. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: A PACGENE study. Genet. Med. 2015;17:569–577. doi: 10.1038/gim.2014.153.
    1. Yang X., Leslie G., Doroszuk A., Schneider S., Allen J., Decker B., Dunning A.M., Redman J., Scarth J., Plaskocinska I., et al. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020;38:674–685. doi: 10.1200/JCO.19.01907.
    1. Roberts N.J., Jiao Y., Yu J., Kopelovich L., Petersen G.M., Bondy M.L., Gallinger S., Schwartz A.G., Syngal S., Cote M.L., et al. ATM Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discov. 2012;2:41–46. doi: 10.1158/-11-0194.
    1. Kastrinos F. Risk of Pancreatic Cancer in Families with Lynch Syndrome. JAMA. 2009;302:1790–1795. doi: 10.1001/jama.2009.1529.
    1. Hu C., Hart S.N., Polley E.C., Gnanaolivu R., Shimelis H., Lee K.Y., Lilyquist J., Na J., Moore R.M., Antwi S.O., et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA. 2018;319:2401–2409. doi: 10.1001/jama.2018.6228.
    1. Golan T., Hammel P., Reni M., Van Cutsem E., Macarulla T., Hall M.J., Park J.-O., Hochhauser D., Arnold D., Oh D.-Y., et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019;381:317–327. doi: 10.1056/NEJMoa1903387.
    1. O’Reilly E.M., Lee J.W., Zalupski M., Capanu M., Park J., Golan T., Tahover E., Lowery M.A., Chou J.F., Sahai V., et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin With or Without Veliparib in Patients With Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J. Clin. Oncol. 2020;38:1378–1388. doi: 10.1200/JCO.19.02931.
    1. Wattenberg M.M., Asch D., Yu S., O’Dwyer P.J., Domchek S.M., Nathanson K.L., Rosen M.A., Beatty G.L., Siegelman E.S., Reiss K.A. Platinum response characteristics of patients with pancreatic ductal adenocarcinoma and a germline BRCA1, BRCA2 or PALB2 mutation. Br. J. Cancer. 2020;122:333–339. doi: 10.1038/s41416-019-0582-7.
    1. Marabelle A., Le D.T., Ascierto P.A., Di Giacomo A.M., De Jesus-Acosta A., Delord J.-P., Geva R., Gottfried M., Penel N., Hansen A.R., et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019;38:1–10. doi: 10.1200/JCO.19.02105.
    1. NCCN . NCCN; 2020. [(accessed on 7 January 2021)]. NCCN Clinical Practice Giodelines in Oncology, Pancreatic Cancer. Available online: .
    1. Brand R.E., Borazanci E., Speare V., Dudley B., Karloski E., Peters M.L.B., Ms L.S., Bahary N., Zeh H., Zureikat A., et al. Prospective study of germline genetic testing in incident cases of pancreatic adenocarcinoma. Cancer. 2018;124:3520–3527. doi: 10.1002/cncr.31628.
    1. Chaffee K.G., Oberg A.L., McWilliams R.R., Majithia N., Allen B.A., Kidd J., Singh N., Hartman A.-R., Wenstrup R.J., Petersen G.M. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet. Med. 2018;20:119–127. doi: 10.1038/gim.2017.85.
    1. Cremin C., Lee M.K., Hong Q., Hoeschen C., MacKenzie A., Dixon K., McCullum M., Nuk J., Kalloger S., Karasinska J., et al. Burden of hereditary cancer susceptibility in unselected patients with pancreatic ductal adenocarcinoma referred for germline screening. Cancer Med. 2020;9:4004–4013. doi: 10.1002/cam4.2973.
    1. Golan T., Kindler H.L., Park J.O., Reni M., Macarulla T., Hammel P., Van Cutsem E., Arnold D., Hochhauser D., McGuinness D., et al. Geographic and Ethnic Heterogeneity of Germline BRCA1 or BRCA2 Mutation Prevalence Among Patients With Metastatic Pancreatic Cancer Screened for Entry Into the POLO Trial. J. Clin. Oncol. 2020;38:1442–1454. doi: 10.1200/JCO.19.01890.
    1. Goldstein J.B., Zhao L., Wang X., Ghelman Y., Overman M.J., Javle M.M., Shroff R.T., Varadhachary G.R., Wolff R.A., McAllister F., et al. Germline DNA Sequencing Reveals Novel Mutations Predictive of Overall Survival in a Cohort of Patients with Pancreatic Cancer. Clin. Cancer Res. 2019;26:1385–1394. doi: 10.1158/1078-0432.CCR-19-0224.
    1. Grant R.C., Selander I., Connor A.A., Selvarajah S., Borgida A., Briollais L., Petersen G.M., Lerner-Ellis J., Holter S., Gallinger S. Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients With Pancreatic Cancer. Gastroenterology. 2015;148:556–564. doi: 10.1053/j.gastro.2014.11.042.
    1. Hu C., LaDuca H., Shimelis H., Polley E.C., Lilyquist J., Hart S.N., Na J., Thomas A., Lee K.Y., Davis B.T., et al. Multigene Hereditary Cancer Panels Reveal High-Risk Pancreatic Cancer Susceptibility Genes. JCO Precis. Oncol. 2018;2:1–28. doi: 10.1200/PO.17.00291.
    1. Lowery A.M., Wong W., Jordan E.J., Lee J.W., Kemel Y., Vijai J., Mandelker D., Zehir A., Capanu M., Salo-Mullen E., et al. Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms. J. Natl. Cancer Inst. 2018;110:1067–1074. doi: 10.1093/jnci/djy024.
    1. Salo-Mullen E.E., O’Reilly E.M., Kelsen D.P., Ba A.M.A., Lowery M.A., Yu K.H., Reidy D.L., Epstein A.S., Lincoln A., Bs A.S., et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121:4382–4388. doi: 10.1002/cncr.29664.
    1. Shindo K., Yu J., Suenaga M., Fesharakizadeh S., Cho C., Macgregor-Das A., Siddiqui A., Witmer P.D., Tamura K., Song T.J., et al. Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. J. Clin. Oncol. 2017;35:3382–3390. doi: 10.1200/JCO.2017.72.3502.
    1. Holter S., Borgida A., Dodd A., Grant R., Semotiuk K., Hedley D., Dhani N., Narod S., Akbari M., Moore M., et al. Germline BRCA Mutations in a Large Clinic-Based Cohort of Patients With Pancreatic Adenocarcinoma. J. Clin. Oncol. 2015;33:3124–3129. doi: 10.1200/JCO.2014.59.7401.
    1. Yurgelun M.B., Chittenden A.B., Morales-Oyarvide V., Rubinson D.A., Dunne R.F., Kozak M.M., Qian Z.R., Ba M.W.W., Brais L.K., Da Silva A., et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet. Med. 2019;21:213–223. doi: 10.1038/s41436-018-0009-5.
    1. Takeuchi S., Doi M., Ikari N., Yamamoto M., Furukawa T. Mutations in BRCA1, BRCA2, and PALB2, and a panel of 50 cancer-associated genes in pancreatic ductal adenocarcinoma. Sci. Rep. 2018;8:8105. doi: 10.1038/s41598-018-26526-x.
    1. Hu C., Hart S.N., Bamlet W.R., Moore R.M., Nandakumar K., Eckloff B.W., Lee Y.K., Petersen G.M., McWilliams R.R., Couch F.J. Prevalence of Pathogenic Mutations in Cancer Predisposition Genes among Pancreatic Cancer Patients. Cancer Epidemiol. Biomark. Prev. 2016;25:207–211. doi: 10.1158/1055-9965.EPI-15-0455.
    1. Obazee O., Archibugi L., Andriulli A., Soucek P., Małecka-Panas E., Ivanauskas A., Johnson T., Gazouli M., Pausch T., Lawlor R.T., et al. Germline BRCA2 K3326X and CHEK2 I157T mutations increase risk for sporadic pancreatic ductal adenocarcinoma. Int. J. Cancer. 2019;145:686–693. doi: 10.1002/ijc.32127.
    1. Dudley B., Karloski E., Monzon F.A., Singhi A.D., Bs S.E.L., Bahary N., Brand R.E. Germline mutation prevalence in individuals with pancreatic cancer and a history of previous malignancy. Cancer. 2018;124:1691–1700. doi: 10.1002/cncr.31242.
    1. Yadav S., Kasi P.M., Bamlet W.R., Ho T.P., Polley E.C., Hu C., Hart S.N., Rabe K.G., Boddicker N.J., Gnanaolivu R.D., et al. Effect of Germline Mutations in Homologous Recombination Repair Genes on Overall Survival of Patients with Pancreatic Adenocarcinoma. Clin. Cancer Res. 2020;26:6505–6512. doi: 10.1158/1078-0432.CCR-20-1788.
    1. Carrera S., Sancho A., Azkona E., Azkuna J., Lopez-Vivanco G. Hereditary pancreatic cancer: Related syndromes and clinical perspective. Hered. Cancer Clin. Pract. 2017;15:1–9. doi: 10.1186/s13053-017-0069-6.
    1. Tung N.M., Robson M.E., Ventz S., Santa-Maria C.A., Marcom P.K., Nanda R., Shah P.D., Ballinger T.J., Yang E.S.-H., Melisko M.E., et al. TBCRC 048: A phase II study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (Olaparib Expanded) J. Clin. Oncol. 2020;38:1002. doi: 10.1200/JCO.2020.38.15_suppl.1002.
    1. Pishvaian M.J., Blais E.M., Brody J.R., Sohal D., Hendifar A.E., Chung V., Mikhail S., Rahib L., Lyons E., Tibbetts L., et al. Outcomes in pancreatic adenocarcinoma (PDA) patients (pts) with genetic alterations in DNA damage repair (DDR) pathways: Results from the Know Your Tumor (KYT) program. J. Clin. Oncol. 2019;37:191. doi: 10.1200/JCO.2019.37.4_suppl.191.
    1. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S.B., Daly M.J., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110.
    1. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–423. doi: 10.1038/gim.2015.30.
    1. Landrum M.J., Lee J.M., Riley G.R., Jang W., Rubinstein W.S., Church D.M., Maglott D.R. ClinVar: Public archive of rela-tionships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–D985. doi: 10.1093/nar/gkt1113.

Source: PubMed

3
구독하다