Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications

Jie Ren, Li Fu, Shivraj Hariram Nile, Jun Zhang, Guoyin Kai, Jie Ren, Li Fu, Shivraj Hariram Nile, Jun Zhang, Guoyin Kai

Abstract

Bioactive chemical constitutes from the root of Salvia miltiorrhiza classified in two major groups, viz., liposoluble tanshinones and water-soluble phenolics. Tanshinone IIA is a major lipid-soluble compound having promising health benefits. The in vivo and in vitro studies showed that the tanshinone IIA and salvianolate have a wide range of cardiovascular and other pharmacological effects, including antioxidative, anti-inflammatory, endothelial protective, myocardial protective, anticoagulation, vasodilation, and anti-atherosclerosis, as well as significantly help to reduce proliferation and migration of vascular smooth muscle cells. In addition, some of the clinical studies reported that the S. miltiorrhiza preparations in combination with Western medicine were more effective for treatment of various cardiovascular diseases including angina pectoris, myocardial infarction, hypertension, hyperlipidemia, and pulmonary heart diseases. In this review, we demonstrated the potential applications of S. miltiorrhiza, including pharmacological effects of salvianolate, tanshinone IIA, and its water-soluble derivative, like sodium tanshinone IIA sulfonate. Moreover, we also provided details about the clinical applications of S. miltiorrhiza preparations in controlling the cardiovascular diseases.

Keywords: Salvia miltiorrhiza; antioxidative; atherosclerosis; cardiovascular diseases; endothelial protective; myocardial infarction.

Figures

Figure 1
Figure 1
Chemical structures of major tanshinones.
Figure 2
Figure 2
Chemical structures of major salvianolic acids.
Figure 3
Figure 3
Chemical structures of sodium tanshinone IIA sulfonate.
Figure 4
Figure 4
Cardiovascular pharmacological effects of TsIIA, STS, and salvianolate (modified based on Li et al., 2018).

References

    1. Ajith T. A., Jayakumar T. G. (2018). Omega-3 fatty acids in coronary heart disease: recent updates and future perspectives. Clin. Exp. Pharmacol. Physiol. 46, 11–18. 10.1111/1440-1681.13034
    1. Aladin A. I., Al Rifai M., Rasool S. H., Keteyian S. J., Brawner C. A., Michos E. D., et al. (2016). The association of resting heart rate and incident hypertension: the Henry Ford Hospital Exercise Testing (FIT) project. Am. J. Hypertens. 29, 251–257. 10.1093/ajh/hpv095
    1. Anupama Y. J., Hegde S. N., Uma G., Patil M. (2017). Hypertension is an important risk determinant for chronic kidney disease: results from a cross-sectional, observational study from a rural population in South India. J. Hum. Hypertens 31, 327–332. 10.1038/jhh.2016.81
    1. Benjamin E. J., Blaha M. J., Chiuve S. E., Cushman M., Das S. R., Deo R., et al. (2017). Heart Disease and Stroke Statistics—2017 update: a report from the American Heart Association. Circulation 135, e146–e603. 10.1161/CIR.0000000000000485
    1. Bopassa J. C., Ferrera R., Gateau-Roesch O., Couture-Lepetit E., Ovize M. (2006). PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc. Res. 69, 178–185. 10.1016/j.cardiores.2005.07.014
    1. Cao W., Guo X. W., Zheng H. Z., Li D. P., Jia G. B., Wang J. (2012). Current progress of research on pharmacologic actions of salvianolic acid B. Chin. J. Integr. Med. 18, 316–320. 10.1007/s11655-012-1052-8
    1. Cao W., Wang Y., Shi M., Hao X., Zhao W., Wang Y., et al. (2018). Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza . Front. Plant Sci. 9, 554. 10.3389/fpls.2018.00554
    1. Chan C. K. W., Zhang L., Cheng C. K., Yang H., Huang Y., Tian X. Y., et al. (2017). Recent advances in managing atherosclerosis via nanomedicine. Small 14, 1702793. 10.1002/smll.201702793
    1. Chang C. C., Chu C. F., Wang C. N., Wu H. T., Bi K. W., Pang J. H., et al. (2014). The anti-atherosclerotic effect of tanshinone IIA is associated with the inhibition of TNF-alpha-induced VCAM-1, ICAM-1 and CX3CL1 expression. Phytomedicine 21, 207–216. 10.1016/j.phymed.2013.09.012
    1. Chen A. D., Wang C. L., Qin Y., Tian L., Chen L. B., Yuan X. M., et al. (2017. a). The effect of Danshen extract on lipoprotein-associated phospholipase A2 levels in patients with stable angina pectoris: study protocol for a randomized controlled trial—the DOLPHIN study. Trials 18, 606. 10.1186/s13063-017-2336-2
    1. Chen K. J., Shi D. Z., Xu H., Lu S. Z., Li T. C., Ke Y. N., et al. (2006). XS0601 reduces the incidence of restenosis: a prospective study of 335 patients undergoing percutaneous coronary intervention in China. Chin. Med. J. (Engl.) 119, 6–13. 10.1097/00029330-200601010-00002
    1. Chen L., Guo Q. H., Chang Y., Zhao Y. S., Li A. Y., Ji E. S. (2017. b). Tanshinone IIA ameliorated endothelial dysfunction in rats with chronic intermittent hypoxia. Cardiovasc. Pathol. 31, 47–53. 10.1016/j.carpath.2017.06.008
    1. Chen T., Li M., Fan X., Cheng J., Wang L. (2018). Sodium tanshinone IIA sulfonate prevents angiotensin ii-induced differentiation of human atrial fibroblasts into myofibroblasts. Oxid. Med. Cell. Longev. 2018, 6712585. 10.1155/2018/6712585
    1. Chen W., Lu Y., Chen G., Huang S. (2013). Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer Agents Med. Chem. 13, 979–987. 10.2174/18715206113139990115
    1. Chen Y. F., Day C. H., Lee N. H., Chen Y. F., Yang J. J., Lin C. H., et al. (2017. c). Tanshinone IIA inhibits beta-catenin nuclear translocation and IGF-2R activation via estrogen receptors to suppress angiotensin II-induced H9c2 cardiomyoblast cell apoptosis. Int. J. Med. Sci. 14, 1284–1291. 10.7150/ijms.20396
    1. Chen Y. F., Lee N. H., Pai P. Y., Chung L. C., Shen C. Y., Rajendran P., et al. (2017. d). Tanshinone-induced ERs suppresses IGFII activation to alleviate Ang II-mediated cardiac hypertrophy. J. Recept. Signal Transduct. Res. 37, 493–499. 10.1080/10799893.2017.1360349
    1. Cheng Q., Zhao Y., Li J. (2017). Sodium tanshinone IIA sulfonate suppresses heat stress-induced endothelial cell apoptosis by promoting NO production through upregulating the PI3K/AKT/eNOS pathway. Mol. Med. Rep. 16, 1612–1618. 10.3892/mmr.2017.6760
    1. Chow C., Cardona M., Raju P. K., Iyengar S., Sukumar A., Raju R., et al. (2007). Cardiovascular disease and risk factors among 345 adults in rural India—the Andhra Pradesh Rural Health Initiative. Int. J. Cardiol. 116, 180–185. 10.1016/j.ijcard.2006.03.043
    1. Chu S. M., Shih W. T., Yang Y. H., Chen P. C., Chu Y. H. (2015). Use of traditional Chinese medicine in patients with hyperlipidemia: a population-based study in Taiwan. J. Ethnopharmacol. 168, 129–135. 10.1016/j.jep.2015.03.047
    1. Cui Z. T., Liu J. P., Wei W. L. (2016). The effects of tanshinone IIA on hypoxia/reoxygenation-induced myocardial microvascular endothelial cell apoptosis in rats via the JAK2/STAT3 signaling pathway. Biomed. Pharmacother. 83, 1116–1126. 10.1016/j.biopha.2016.07.054
    1. Deng C., Hao X., Shi M., Fu R., Wang Y., Zhang Y., et al. (2019). Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci. 284, 1–8. 10.1016/j.plantsci.2019.03.007
    1. Derkacz A., Protasiewicz M., Poreba R., Doroszko A., Poreba M., Antonowicz-Juchniewicz J., et al. (2011). Plasma asymmetric dimethylarginine predicts restenosis after coronary angioplasty. Arch. Med. Sci. 7, 444–448. 10.5114/aoms.2011.23410
    1. Fang J., Little P. J., Xu S. (2018). Atheroprotective effects and molecular targets of tanshinones derived from herbal medicine Danshen. Med. Res. Rev. 38, 201–228. 10.1002/med.21438
    1. Farias J. G., Molina V. M., Carrasco R. A., Zepeda A. B., Figueroa E., Letelier P., et al. (2017). Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients 9, 966. 10.3390/nu9090966
    1. Fei A. H., Cao Q., Chen S. Y., Wang H. R., Wang F. L., Pan S. M., et al. (2013). Salvianolate inhibits reactive oxygen species production in H(2)O(2)-treated mouse cardiomyocytes in vitro via the TGFbeta pathway. Acta Pharmacol. Sin. 34, 496–500. 10.1038/aps.2012.209
    1. Feng J., Li S., Chen H. (2016). Tanshinone IIA inhibits myocardial remodeling induced by pressure overload via suppressing oxidative stress and inflammation: possible role of silent information regulator 1. Eur. J. Pharmacol. 791, 632–639. 10.1016/j.ejphar.2016.09.041
    1. Feng J., Chen H. W., Pi L. J., Wang J., Zhan D. Q. (2017). Protective effect of tanshinone IIA against cardiac hypertrophy in spontaneously hypertensive rats through inhibiting the Cys-C/Wnt signaling pathway. Oncotarget 8, 10161–10170. 10.18632/oncotarget.14328
    1. Feng X., Li Y., Wang Y., Li L., Little P. J., Xu S. W., et al. (2019). Danhong injection in cardiovascular and cerebrovascular diseases: pharmacological actions, molecular mechanisms, and therapeutic potential. Pharmacol. Res. 139, 62–75. 10.1016/j.phrs.2018.11.006
    1. Fenyo I. M., Gafencu A. V. (2013). The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 218, 1376–1384. 10.1016/j.imbio.2013.06.005
    1. Gao J., Chen G., He H., Liu C., Xiong X., Li J., et al. (2017). Therapeutic effects of breviscapine in cardiovascular diseases: a review. Front. Pharmacol. 8, 289. 10.3389/fphar.2017.00289
    1. Gao S., Liu Z., Li H., Little P. J., Liu P., Xu S. (2012). Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis 220, 3–10. 10.1016/j.atherosclerosis.2011.06.041
    1. Gilbert R. E. (2014). The endothelium in diabetic nephropathy. Curr. Atheroscler. Rep. 16, 410. 10.1007/s11883-014-0410-8
    1. Guo Z., Yan M., Chen L., Fang P., Li Z., Wan Z., et al. (2018). Nrf2-dependent antioxidant response mediated the protective effect of tanshinone IIA on doxorubicin-induced cardiotoxicity. Exp. Ther. Med. 16, 3333–3344. 10.3892/etm.2018.6614
    1. Gupta R., Mohan I., Narula J. (2016). Trends in coronary heart disease epidemiology in India. Ann. Glob. Health 82, 307–315. 10.1016/j.aogh.2016.04.002
    1. Han B., Zhang X., Zhang Q., Zhao G., Wei J., Ma S., et al. (2011). Protective effects of salvianolate on microvascular flow in a porcine model of myocardial ischaemia and reperfusion. Arch. Cardiovasc. Dis. 104, 313–324. 10.1016/j.acvd.2011.02.004
    1. Han M. K., Mclaughlin V. V., Criner G. J., Martinez F. J. (2007). Pulmonary diseases and the heart. Circulation 116, 2992–3005. 10.1161/CIRCULATIONAHA.106.685206
    1. Hao P., Jiang F., Cheng J., Ma L., Zhang Y., Zhao Y. (2017). Traditional Chinese medicine for cardiovascular disease: evidence and potential mechanisms. J. Am. Coll. Cardiol. 69, 2952–2966. 10.1016/j.jacc.2017.04.041
    1. He Z., Sun C., Xu Y., Cheng D. (2016). Reduction of atrial fibrillation by Tanshinone IIA in chronic heart failure. Biomed. Pharmacother. 84, 1760–1767. 10.1016/j.biopha.2016.10.110
    1. Ho J. H., Hong C. Y. (2011). Salvianolic acids: small compounds with multiple mechanisms for cardiovascular protection. J. Biomed. Sci. 18, 30. 10.1186/1423-0127-18-30
    1. Hu H., Zhai C., Qian G., Gu A., Liu J., Ying F., et al. (2015). Protective effects of tanshinone IIA on myocardial ischemia reperfusion injury by reducing oxidative stress, HMGB1 expression, and inflammatory reaction. Pharm. Biol. 53, 1752–1758. 10.3109/13880209.2015.1005753
    1. Huang D. D., Wei X. H., Mu H. N., Pan C. S., Li Q., Hu B. H., et al. (2019. a). Total salvianolic acid injection prevents ischemia/reperfusion-induced myocardial injury via antioxidant mechanism involving mitochondrial respiratory chain through the upregulation of Sirtuin1 and Sirtuin3. Shock 51, 745–756. 10.1097/SHK.0000000000001185
    1. Huang Q., Sun M., Yuan T., Wang Y., Shi M., Lu S., et al. (2019. b). The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza . Food Chem. 274, 368–375. 10.1016/j.foodchem.2018.08.119
    1. Huang Y., Li L., Li X., Fan S., Zhuang P., Zhang Y. (2018. b). Ginseng compatibility environment attenuates toxicity and keeps efficacy in cor pulmonale treated by Fuzi Beimu incompatibility through the coordinated crosstalk of PKA and Epac signaling pathways. Front. Pharmacol. 9, 634. 10.3389/fphar.2018.00634
    1. Huang Y., Deng Z., Se Z., Bai Y., Yan C., Zhan Q., et al. (2018. a). Combined impact of risk factors on the subsequent development of hypertension. J. Hypertens. 37, 696-701. 10.1097/HJH.0000000000001956
    1. Jia C., Han S., Wei L., Dang X., Niu Q., Chen M., et al. (2018). Protective effect of compound Danshen (Salvia miltiorrhiza) dripping pills alone and in combination with carbamazepine on kainic acid-induced temporal lobe epilepsy and cognitive impairment in rats. Pharm. Biol. 56, 217–224. 10.1080/13880209.2018.1432665
    1. Jia L. Q., Zhang N., Xu Y., Chen W. N., Zhu M. L., Song N., et al. (2016). Tanshinone IIA affects the HDL subfractions distribution not serum lipid levels: involving in intake and efflux of cholesterol. Arch. Biochem. Biophys. 592, 50–59. 10.1016/j.abb.2016.01.001
    1. Kong Q., Dai L., Wang Y., Zhang X., Li C., Jiang S., et al. (2016). HSPA12B attenuated acute myocardial ischemia/reperfusion injury via maintaining endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Sci. Rep. 6, 33636. 10.1038/srep33636
    1. Krishnan E., Kwoh C. K., Schumacher H. R., Kuller L. (2007). Hyperuricemia and incidence of hypertension among men without metabolic syndrome. Hypertension 49, 298–303. 10.1161/01.HYP.0000254480.64564.b6
    1. Laaksonen D. E., Niskanen L., Nyyssonen K., Lakka T. A., Laukkanen J. A., Salonen J. T. (2008). Dyslipidaemia as a predictor of hypertension in middle-aged men. Eur. Heart J. 29, 2561–2568. 10.1093/eurheartj/ehn061
    1. Lam F. F., Yeung J. H., Kwan Y. W., Chan K. M., Or P. M. (2006). Salvianolic acid B, an aqueous component of danshen (Salvia miltiorrhiza), relaxes rat coronary artery by inhibition of calcium channels. Eur. J. Pharmacol. 553, 240–245. 10.1016/j.ejphar.2006.09.030
    1. Li H. Z., Lu Y. H., Huang G. S., Chen Q., Fu Q., Li Z. L. (2014). Tanshinone II A inhibits dendritic cell-mediated adaptive immunity: potential role in anti-atherosclerotic activity. Chin. J. Integr. Med. 20, 764–769. 10.1007/s11655-012-1213-9
    1. Li L., Sha Z., Wang Y., Yang D., Li J., Duan Z., et al. (2019). Pre-treatment with a combination of Shenmai and Danshen injection protects cardiomyocytes against hypoxia/reoxygenation- and H2O2-induced injury by inhibiting mitochondrial permeability transition pore opening. Exp. Ther. Med. 17, 4643–4652. 10.3892/etm.2019.7462
    1. Li Q., Shen L., Wang Z., Jiang H. P., Liu L. X. (2016). Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed. Pharmacother. 84, 106–114. 10.1016/j.biopha.2016.09.014
    1. Li X., Zhang J., Huang J., Ma A., Yang J., Li W., et al. (2013). A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure. J. Am. Coll. Cardiol. 62, 1065–1072. 10.1016/j.jacc.2013.05.035
    1. Li Y., Guo Y., Chen Y., Wang Y., You Y., Yang Q., et al. (2015. a). Establishment of an interleukin-1beta-induced inflammation-activated endothelial cell-smooth muscle cell-mononuclear cell co-culture model and evaluation of the anti-inflammatory effects of tanshinone IIA on atherosclerosis. Mol. Med. Rep. 12, 1665–1676. 10.3892/mmr.2015.3668
    1. Li Y. H., Xu Q., Xu W. H., Guo X. H., Zhang S., Chen Y. D. (2015. b). Mechanisms of protection against diabetes-induced impairment of endothelium-dependent vasorelaxation by Tanshinone IIA. Biochim. Biophys. Acta 1850, 813–823. 10.1016/j.bbagen.2015.01.007
    1. Li Z.M., Xu S.W., Liu P.Q. (2018). Salvia miltiorrhiza Burge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol. Sin. 39, 802-824. 10.1038/aps.2017.193
    1. Liu D., Yang G., Zhao X., Yang H. (2018). Effects of probucol on atherosclerotic plaque and soluble thrombomodulin in patients with coronary heart disease. Exp. Ther. Med. 16, 886–890. 10.3892/etm.2018.6264
    1. Liu M., Li Y. G., Zhang F., Yang L., Chou G. X., Wang Z. T., et al. (2007). Chromatographic fingerprinting analysis of Danshen root (Salvia miltiorrhiza Radix et Rhizoma) and its preparations using high performance liquid chromatography with diode array detection and electrospray mass spectrometry (HPLC-DAD-ESI/MS). J. Sep. Sci. 30, 2256–2267. 10.1002/jssc.200700149
    1. Liu Y., Huang Y., Zhao C., Qin X., Zhu Q., Chen S., et al. (2014. a). Salvia miltiorrhiza injection on pulmonary heart disease: a systematic review and meta-analysis. Am. J. Chin. Med. 42, 1315–1331. 10.1142/S0192415X14500827
    1. Liu Z., Wang J., Huang E., Gao S., Li H., Lu J., et al. (2014. b). Tanshinone IIA suppresses cholesterol accumulation in human macrophages: role of heme oxygenase-1. J. Lipid Res. 55, 201–213. 10.1194/jlr.M040394
    1. Lu M., Luo Y., Hu P., Dou L., Huang S. (2018). Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling. Iran J. Basic Med. Sci. 21, 83–88. 10.22038/IJBMS.2017.20100.5276
    1. Lu T. M., Ding Y. A., Lin S. J., Lee W. S., Tai H. C. (2003). Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur. Heart J. 24, 1912–1919. 10.1016/j.ehj.2003.08.013
    1. Lu Z., Kou W., Du B., Wu Y., Zhao S., Brusco O. A., et al. (2008). Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am. J. Cardiol. 101, 1689–1693. 10.1016/j.amjcard.2008.02.056
    1. Luo J., Xu H., Chen K. (2013). Systematic review of compound danshen dropping pill: a chinese patent medicine for acute myocardial infarction. Evid. Based Complement. Alternat. Med. 2013, 808076. 10.1155/2013/808076
    1. Ma P., Liu J., Zhang C., Liang Z. (2013). Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol. 170, 1253–1262. 10.1007/s12010-013-0265-4
    1. Ma P. D., Liu J. Y., Osbourn A., Dong J. N., Liang Z. S. (2015). Regulation and metabolic engineering of tanshinone biosynthesis. RSC Adv. 5, 18137–18144. 10.1039/C4RA13459A
    1. Maione F., De Feo V., Caiazzo E., De Martino L., Cicala C., Mascolo N. (2014). Tanshinone IIA, a major component of Salvia milthorriza Bunge, inhibits platelet activation via Erk-2 signaling pathway. J. Ethnopharmacol. 155, 1236–1242. 10.1016/j.jep.2014.07.010
    1. Makino H., Miyamoto Y., Kikuchi-Taura A., Soma T., Taguchi A., Kishimoto I. (2015). Decreased levels of circulating CD34(+) cells are associated with coronary heart disease in Japanese patients with type 2 diabetes. J. Diabetes Investig. 6, 473–478. 10.1111/jdi.12310
    1. Mao S., Li X., Wang L., Yang P. C., Zhang M. (2015). Rationale and design of sodium tanshinone IIA sulfonate in left ventricular remodeling secondary to acute myocardial infarction (STAMP-REMODELING) trial: a randomized controlled study. Cardiovasc. Drugs Ther. 29, 535–542. 10.1007/s10557-015-6625-2
    1. Mao S., Li W., Qa’aty N., Vincent M., Zhang M., Hinek A. (2016). Tanshinone IIA inhibits angiotensin II induced extracellular matrix remodeling in human cardiac fibroblasts—implications for treatment of pathologic cardiac remodeling. Int. J. Cardiol. 202, 110–117. 10.1016/j.ijcard.2015.08.191
    1. Meng C., Zhuo X. Q., Xu G. H., Liu J. L. (2014). Protection of salvianolate against atherosclerosis via regulating the inflammation in rats. J. Huazhong Univ. Sci. Technol. Med. Sci. 34, 646–651. 10.1007/s11596-014-1331-z
    1. Miao C., Chang J., Zhang G. (2018). Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Mol. Biol. Rep. 45, 2883–2896. 10.1007/s11033-018-4335-0
    1. Morio M., Inoue M., Inoue K., Akimoto K. (2013). Impaired fasting glucose as an independent risk factor for hypertension among healthy middle-aged Japanese subjects with optimal blood pressure: the Yuport Medical Checkup Centre retrospective cohort study. Diabetol. Metab. Syndr. 5, 81. 10.1186/1758-5996-5-81
    1. Nichols M., Townsend N., Scarborough P., Rayner M. (2014). Cardiovascular disease in Europe 2014: epidemiological update. Eur. Heart J. 35, 2950–2959. 10.1093/eurheartj/ehu299
    1. Opie L. H., Commerford P. J., Gersh B. J., Pfeffer M. A. (2006). Controversies in ventricular remodelling. Lancet 367, 356–367. 10.1016/S0140-6736(06)68074-4
    1. Pan C. H., Chen C. W., Sheu M. J., Wu C. H. (2012). Salvianolic acid B inhibits SDF-1alpha-stimulated cell proliferation and migration of vascular smooth muscle cells by suppressing CXCR4 receptor. Vascul. Pharmacol. 56, 98–105. 10.1016/j.vph.2011.11.008
    1. Pan Y., Qian J. X., Lu S. Q., Chen J. W., Zhao X. D., Jiang Y., et al. (2017). Protective effects of tanshinone IIA sodium sulfonate on ischemia-reperfusion-induced myocardial injury in rats. Iran J. Basic Med. Sci. 20, 308–315. 10.22038/ijbms.2017.8361
    1. Panda V. S., Naik S. R. (2008). Cardioprotective activity of Ginkgo biloba phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp. Toxicol. Pathol. 60, 397–404. 10.1016/j.etp.2008.03.010
    1. Pang J., Hu P., Wang J., Jiang J., Lai J. (2019). Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NFkappaB signaling pathways. Mol. Med. Rep. 19, 5291–5300. 10.3892/mmr.2019.10211
    1. Paolocci N., Biondi R., Bettini M., Lee C. I., Berlowitz C. O., Rossi R., et al. (2001). Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J. Mol. Cell. Cardiol. 33, 671–679. 10.1006/jmcc.2000.1334
    1. Qi J. Y., Yu J., Huang D. H., Guo L. H., Wang L., Huang X., et al. (2017). Salvianolate reduces murine myocardial ischemia and reperfusion injury via ERK1/2 signaling pathways in vivo. Chin. J. Integr. Med. 23, 40–47. 10.1007/s11655-016-2621-z
    1. Qian C., Ren Y., Xia Y. (2017). Sodium tanshinone IIA sulfonate attenuates hemorrhagic shock-induced organ damages by nuclear factor-kappa B pathway. J. Surg. Res. 209, 145–152. 10.1016/j.jss.2016.10.008
    1. Qiang G., Yang X., Shi L., Zhang H., Chen B., Zhao Y., et al. (2015). Antidiabetic effect of salvianolic acid A on diabetic animal models via AMPK activation and mitochondrial regulation. Cell. Physiol. Biochem. 36, 395–408. 10.1159/000430258
    1. Qiu H., Liu W., Lan T., Pan W., Chen X., Wu H., et al. (2018). Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-beta1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine 51, 255–265. 10.1016/j.phymed.2018.09.238
    1. Qiu S. L., Jin M., Yi J. H., Zhu T. G., Quan X., Liang Y. (2009). Therapy for replenishing qi, nourishing yin and promoting blood circulation in patients with acute myocardial infarction undergoing percutaneous coronary intervention: a randomized controlled trial. Zhong Xi Yi Jie He Xue Bao 7, 616–621. 10.3736/jcim20090704
    1. Ramirez L. A., Sullivan J. C. (2018). Sex differences in hypertension: where we have been and where we are going. Am. J. Hypertens. 31, 1247–1254. 10.1093/ajh/hpy148
    1. Rezaei-Hachesu P., Oliyaee A., Safaie N., Ferdousi R. (2017). Comparison of coronary artery disease guidelines with extracted knowledge from data mining. J. Cardiovasc. Thorac. Res. 9, 95–101. 10.15171/jcvtr.2017.16
    1. Sanz J., Fayad Z. A. (2008). Imaging of atherosclerotic cardiovascular disease. Nature 451, 953–957. 10.1038/nature06803
    1. Shenghua P., Shuyu T., Kunping L., Huixia Z., Xue X., Jiao G. (2018). UPLC-QTOF/MS-based lipidomic profiling of liver Qi-stagnation and spleen-deficiency syndrome in patients with hyperlipidemia. Evid. Based Complement. Alternat. Med. 2018, 4530849. 10.1155/2018/4530849
    1. Shi L., Xie Y., Liao X., Chai Y., Luo Y. (2015). Shenmai injection as an adjuvant treatment for chronic cor pulmonale heart failure: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Altern. Med. 15, 418. 10.1186/s12906-015-0939-2
    1. Shi M., Huang F., Deng C., Wang Y., Kai G. (2019). Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza . Crit. Rev. Food Sci. Nutr. 59, 953–964. 10.1080/10408398.2018.1474170
    1. Shihab H. M., Meoni L. A., Chu A. Y., Wang N. Y., Ford D. E., Liang K. Y., et al. (2012). Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation 126, 2983–2989. 10.1161/CIRCULATIONAHA.112.117333
    1. Shou Q., Pan Y., Xu X., Xu J., Wang D., Ling Y., et al. (2012). Salvianolic acid B possesses vasodilation potential through NO and its related signals in rabbit thoracic aortic rings. Eur. J. Pharmacol. 697, 81–87. 10.1016/j.ejphar.2012.09.044
    1. Shujaat A., Minkin R., Eden E. (2007). Pulmonary hypertension and chronic cor pulmonale in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2, 273–282.
    1. Souilhol C., Harmsen M. C., Evans P. C., Krenning G. (2018). Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc. Res. 114, 565–577. 10.1093/cvr/cvx253
    1. Stumpf C., Fan Q., Hintermann C., Raaz D., Kurfurst I., Losert S., et al. (2013). Anti-inflammatory effects of danshen on human vascular endothelial cells in culture. Am. J. Chin. Med. 41, 1065–1077. 10.1142/S0192415X13500729
    1. Sun M., Shi M., Wang Y., Huang Q., Yuan T., Wang Q., et al. (2019). The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza . J. Exp. Bot. 70, 243–254. 10.1093/jxb/ery349
    1. Tabas I., Garcia-Cardena G., Owens G. K. (2015). Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209, 13–22. 10.1083/jcb.201412052
    1. Takase H., Dohi Y., Toriyama T., Okado T., Tanaka S., Sonoda H., et al. (2012). Evaluation of risk for incident hypertension using glomerular filtration rate in the normotensive general population. J. Hypertens. 30, 505–512. 10.1097/HJH.0b013e32834f6a1d
    1. Talaei M., Sadeghi M., Mohammadifard N., Shokouh P., Oveisgharan S., Sarrafzadegan N. (2014). Incident hypertension and its predictors: the Isfahan Cohort Study. J. Hypertens. 32, 30–38. 10.1097/HJH.0b013e32836591d4
    1. Tan D., Wu J. R., Zhang X. M., Liu S., Zhang B. (2018). Sodium tanshinone II a sulfonate injection as adjuvant treatment for unstable angina pectoris: a meta-analysis of 17 randomized controlled trials. Chin. J. Integr. Med. 24, 156–160. 10.1007/s11655-017-2424-x
    1. Thawornchaisit P., De Looze F., Reid C. M., Seubsman S. A., Sleigh A. C., Thai Cohort Study T. (2013). Health risk factors and the incidence of hypertension: 4-year prospective findings from a national cohort of 60 569 Thai Open University students. BMJ Open 3, e002826. 10.1136/bmjopen-2013-002826
    1. Tian G., Sun Y., Liu S., Li C., Chen S., Qiu R., et al. (2018). Therapeutic effects of wenxin keli in cardiovascular diseases: an experimental and mechanism overview. Front. Pharmacol. 9, 1005. 10.3389/fphar.2018.01005
    1. Tsang A., Hausenloy D. J., Mocanu M. M., Yellon D. M. (2004). Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ. Res. 95, 230–232. 10.1161/01.RES.0000138303.76488.fe
    1. Tsujimoto T., Sairenchi T., Iso H., Irie F., Yamagishi K., Tanaka K., et al. (2012). Impact of obesity on incident hypertension independent of weight gain among nonhypertensive Japanese: the Ibaraki Prefectural Health Study (IPHS). J. Hypertens. 30, 1122–1128. 10.1097/HJH.0b013e328352b879
    1. Wang B., Ge Z., Cheng Z., Zhao Z. (2017). Tanshinone IIA suppresses the progression of atherosclerosis by inhibiting the apoptosis of vascular smooth muscle cells and the proliferation and migration of macrophages induced by ox-LDL. Biol. Open 6, 489–495. 10.1242/bio.024133
    1. Wang C., Luo H., Xu Y., Tao L., Chang C., Shen X. (2018. a). Salvianolic acid B-alleviated angiotensin II induces cardiac fibrosis by suppressing NF-kappaB pathway in vitro. Med. Sci. Monit. 24, 7654–7664. 10.12659/MSM.908936
    1. Wang J., Jiang Q., Wan L., Yang K., Zhang Y., Chen Y., et al. (2013. a). Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. Am. J. Respir. Cell Mol. Biol. 48, 125–134. 10.1165/rcmb.2012-0071OC
    1. Wang J., Lu W., Wang W., Zhang N., Wu H., Liu C., et al. (2013. b). Promising therapeutic effects of sodium tanshinone IIA sulfonate towards pulmonary arterial hypertension in patients. J. Thorac. Dis. 5, 169–172. 10.3978/j.issn.2072-1439.2013.02.04
    1. Wang L., Li Y., Deng W., Dong Z., Li X., Liu D., et al. (2018. b). Cardio-protection of ultrafine granular powder for Salvia miltiorrhiza Bunge against myocardial infarction. J. Ethnopharmacol. 222, 99–106. 10.1016/j.jep.2018.04.029
    1. Wang X., Wang Y., Jiang M., Zhu Y., Hu L., Fan G., et al. (2011). Differential cardioprotective effects of salvianolic acid and tanshinone on acute myocardial infarction are mediated by unique signaling pathways. J. Ethnopharmacol. 135, 662–671. 10.1016/j.jep.2011.03.070
    1. Wang X. X., Yang J. X., Pan Y. Y., Zhang Y. F. (2015). Protective effects of tanshinone A on endothelial progenitor cells injured by tumor necrosis factor-alpha. Mol. Med. Rep. 12, 4055–4062. 10.3892/mmr.2015.3969
    1. Wei B., Li W. W., Ji J., Hu Q. H., Ji H. (2014). The cardioprotective effect of sodium tanshinone IIA sulfonate and the optimizing of therapeutic time window in myocardial ischemia/reperfusion injury in rats. Atherosclerosis 235, 318–327. 10.1016/j.atherosclerosis.2014.05.924
    1. Weitzenblum E., Chaouat A. (2009). Cor pulmonale. Chron. Respir. Dis. 6, 177–185. 10.1177/1479972309104664
    1. Wong N. D. (2014). Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11, 276–289. 10.1038/nrcardio.2014.26
    1. Wu D. M., Wang Y. J., Han X. R., Wen X., Li L., Xu L., et al. (2018). Tanshinone IIA prevents left ventricular remodelling via the TLR4/MyD88/NF-kappaB signalling pathway in rats with myocardial infarction. J. Cell. Mol. Med. 22, 3058–3072. 10.1111/jcmm.13557
    1. Wu L. C., Lin X., Sun H. (2012). Tanshinone IIA protects rabbits against LPS-induced disseminated intravascular coagulation (DIC). Acta Pharmacol. Sin. 33, 1254–1259. 10.1038/aps.2012.84
    1. Wu T., Ni J., Wu J. (2008). Danshen (Chinese medicinal herb) preparations for acute myocardial infarction. Cochrane Database Syst. Rev., 16, CD004465. 10.1002/14651858.CD004465.pub2
    1. Wu W. Y., Yan H., Wang X. B., Gui Y. Z., Gao F., Tang X. L., et al. (2014). Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase. PLoS One 9, e94957. 10.1371/journal.pone.0094957
    1. Xia Z., Gu J., Ansley D. M., Xia F., Yu J. (2003). Antioxidant therapy with Salvia miltiorrhiza decreases plasma endothelin-1 and thromboxane B2 after cardiopulmonary bypass in patients with congenital heart disease. J. Thorac. Cardiovasc. Surg. 126, 1404–1410. 10.1016/S0022-5223(03)00970-X
    1. Xie W., Zhao Y., Du L. (2012). Emerging approaches of traditional Chinese medicine formulas for the treatment of hyperlipidemia. J. Ethnopharmacol. 140, 345–367. 10.1016/j.jep.2012.01.027
    1. Xu S., Bai P., Little P. J., Liu P. (2014). Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med. Res. Rev. 34, 644–675. 10.1002/med.21300
    1. Xu S., Ogura S., Chen J., Little P. J., Moss J., Liu P. (2013). LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell. Mol. Life Sci. 70, 2859–2872. 10.1007/s00018-012-1194-z
    1. Xuan Y., Gao Y., Huang H., Wang X., Cai Y., Luan Q. X. (2017). Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis . Inflammation 40, 1631–1642. 10.1007/s10753-017-0603-8
    1. Yan F. F., Liu Y. F., Liu Y., Zhao Y. X. (2009). Sulfotanshinone sodium injection could decrease fibrinogen level and improve clinical outcomes in patients with unstable angina pectoris. Int. J. Cardiol. 135, 254–255. 10.1016/j.ijcard.2008.03.020
    1. Yang J. X., Pan Y. Y., Ge J. H., Chen B., Mao W., Qiu Y. G., et al. (2016. a). Tanshinone II A attenuates TNF-alpha-induced expression of VCAM-1 and ICAM-1 in endothelial progenitor cells by blocking activation of NF-kappaB. Cell. Physiol. Biochem. 40, 195–206. 10.1159/000452537
    1. Yang L. L., Li D. Y., Zhang Y. B., Zhu M. Y., Chen D., Xu T. D. (2012. a). Salvianolic acid A inhibits angiotensin II-induced proliferation of human umbilical vein endothelial cells by attenuating the production of ROS. Acta Pharmacol. Sin. 33, 41–48. 10.1038/aps.2011.133
    1. Yang M. C., You F. L., Wang Z., Liu X. N., Wang Y. F. (2016. b). Salvianolic acid B improves the disruption of high glucose-mediated brain microvascular endothelial cells via the ROS/HIF-1alpha/VEGF and miR-200b/VEGF signaling pathways. Neurosci. Lett. 630, 233–240. 10.1016/j.neulet.2016.08.005
    1. Yang T. L., Lin F. Y., Chen Y. H., Chiu J. J., Shiao M. S., Tsai C. S., et al. (2011). Salvianolic acid B inhibits low-density lipoprotein oxidation and neointimal hyperplasia in endothelium-denuded hypercholesterolaemic rabbits. J. Sci. Food Agric. 91, 134–141. 10.1002/jsfa.4163
    1. Yang T. Y., Wei J. C., Lee M. Y., Chen C. M., Ueng K. C. (2012. b). A randomized, double-blind, placebo-controlled study to evaluate the efficacy and tolerability of Fufang Danshen (Salvia miltiorrhiza) as add-on antihypertensive therapy in Taiwanese patients with uncontrolled hypertension. Phytother. Res. 26, 291–298. 10.1002/ptr.3548
    1. Yang W. S., Jeong D., Yi Y. S., Park J. G., Seo H., Moh S. H., et al. (2013). IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm. 2013, 518183. 10.1155/2013/518183
    1. Yu H., Zhang H., Zhao W., Guo L., Li X., Li Y., et al. (2016). Gypenoside protects against myocardial ischemia-reperfusion injury by inhibiting cardiomyocytes apoptosis via inhibition of CHOP pathway and activation of PI3K/Akt pathway in vivo and in vitro. Cell. Physiol. Biochem. 39, 123–136. 10.1159/000445611
    1. Yu M. L., Li S. M., Gao X., Li J. G., Xu H., Chen K. J. (2018). Sodium tanshinone II A sulfonate for coronary heart disease: a systematic review of randomized controlled trials. Chin. J. Integr. Med. 24, 1–8. 10.1007/s11655-018-2556-7
    1. Yuan X., Jing S., Wu L., Chen L., Fang J. (2014). Pharmacological postconditioning with tanshinone IIA attenuates myocardial ischemia-reperfusion injury in rats by activating the phosphatidylinositol 3-kinase pathway. Exp. Ther. Med. 8, 973–977. 10.3892/etm.2014.1820
    1. Yue R. C., Yang X. L., Zhang R. Y., Liu S., Liu J., Zeng J., et al. (2017. a). The effects and related mechanism of salvianolate on rats with myocardial ischemia-reperfusion injury. Zhonghua Xin Xue Guan Bing Za Zhi 45, 1072–1077. 10.3760/cma.j.issn.0253-3758.2017.12.012
    1. Yue R. C., Yang X. L., Zhang R. Y., Liu S., Liu J., Zeng J., et al. (2017. b). Salvianolate protects H9c2 cells from hypoxia/reoxygenation injury-induced apoptosis by attenuating mitochondrial DNA oxidative damage. Zhonghua Xin Xue Guan Bing Za Zhi 45, 57–63. 10.3760/cma.j.issn.0253-3758.2017.01.011
    1. Zhang D., Wu J., Liu S., Zhang X., Zhang B. (2016). Salvianolate injection in the treatment of unstable angina pectoris: a systematic review and meta-analysis. Medicine (Baltimore) 95, e5692. 10.1097/MD.0000000000005692
    1. Zhang G. X., Zhang Y. Y., Zhang X. X., Wang P. Q., Liu J., Liu Q., et al. (2018. a). Different network pharmacology mechanisms of Danshen-based Fangjis in the treatment of stable angina. Acta Pharmacol. Sin. 39, 952–960. 10.1038/aps.2017.191
    1. Zhang H. C., Liu W., Yuan H. T., Tang Y. S. (2014. b). Salvia miltiorrhiza reduces plasma levels of asymmetric ADMA in patients with non-ST elevation myocardial infarction undergoing percutaneous coronary intervention. Zhongguo Zhong Xi Yi Jie He Za Zhi 34, 1436–1439. 10.6138/JIT.2013.14.1.10
    1. Zhang H., Long M., Wu Z., Han X., Yu Y. (2014. a). Sodium tanshinone IIA silate as an add-on therapy in patients with unstable angina pectoris. J. Thorac. Dis. 6, 1794–1799. 10.3978/j.issn.2072-1439.2014.12.37
    1. Zhang P. T., Chen Z. R. (1994). Effect of Salvia miltiorrhiza on lipid peroxidation antioxidant enzymes activity in patients with chronic cor pulmonale. Zhongguo Zhong Xi Yi Jie He Za Zhi 14, 474–477. 10.1007/bf02934242
    1. Zhang Q., Jiao F., Hua C. (2017. a). Perioperative application of salvianolate on oxidative stress and plasma IMD/ADM2 in patients with acute myocardial infarction undergoing PCI. Exp. Ther. Med. 13, 1475–1479. 10.3892/etm.2017.4114
    1. Zhang Q., Xiao X., Zheng J., Li M., Yu M., Ping F., et al. (2018. b). Compound danshen dripping pill inhibits retina cell apoptosis in diabetic rats. Front. Physiol. 9, 1501. 10.3389/fphys.2018.01501
    1. Zhang S. J., Cheng Z. X., Lin Y. W., Qin J., Cheng Y. H., Liu S. L. (2007). Effection of compositie salviae dropping pill on hyperlipemia patients with phlegm and blood stasis syndrome. Zhongguo Zhong Yao Za Zhi 32, 440–443. 10.3321/j.issn:1001-5302.2007.05.022
    1. Zhang W., Li Y., Li R., Wang Y., Zhu M., Wang B., et al. (2017. b). Sodium tanshinone IIA sulfonate prevents radiation-induced toxicity in H9c2 cardiomyocytes. Evid. Based Complement. Alternat. Med. 2017, 4537974. 10.1155/2017/4537974
    1. Zhang X. D., He C. X., Cheng J., Wen J., Li P. Y., Wang N., et al. (2018. c). Sodium tanshinone II-A sulfonate (DS-201) induces vasorelaxation of rat mesenteric arteries via inhibition of L-type Ca(2+) channel. Front. Pharmacol. 9, 62. 10.3389/fphar.2018.00062
    1. Zhang Y., Jiang P., Ye M., Kim S. H., Jiang C., Lu J. (2012). Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int. J. Mol. Sci. 13, 13621–13666. 10.3390/ijms131013621
    1. Zhao D., Tong L., Zhang L., Li H., Wan Y., Zhang T. (2016). Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-kappaB activation in apolipoprotein-E-deficient mice. Mol. Med. Rep. 14, 4983–4990. 10.3892/mmr.2016.5916
    1. Zhou L., Chow M., Zuo Z. (2006). Improved quality control method for Danshen products—consideration of both hydrophilic and lipophilic active components. J. Pharm. Biomed. Anal. 41, 744–750. 10.1016/j.jpba.2005.12.032
    1. Zhou W., Huang Q., Wu X., Zhou Z., Ding M., Shi M., et al. (2017). Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep. 7, 10554. 10.1038/s41598-017-10215-2
    1. Zhu J., Xu Y., Ren G., Hu X., Wang C., Yang Z., et al. (2017). Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol. 815, 427–436. 10.1016/j.ejphar.2017.09.047
    1. Zhu Z., Wang Y., Liao W., Li H., Wang D. (2018). Effect of various Danshen injections on patients with coronary heart disease after percutaneous coronary intervention: a protocol for a systematic review and network meta-analysis. Medicine (Baltimore) 97, e11062. 10.1097/MD.0000000000011062
    1. Zou J. B., Zhang X. F., Wang J., Wang F., Cheng J. X., Yang F. Y., et al. (2018). The therapeutic efficacy of Danhong injection combined with percutaneous coronary intervention in acute coronary syndrome: a systematic review and meta-analysis. Front. Pharmacol. 9, 550. 10.3389/fphar.2018.00550

Source: PubMed

3
구독하다