Randomised, double-blind, placebo-controlled, phase 2, superiority trial to demonstrate the effectiveness of faecal microbiota transplantation for selective intestinal decolonisation of patients colonised by carbapenemase-producing Klebsiella pneumoniae (KAPEDIS)

Elena Pérez-Nadales, Ángela Cano, Manuel Recio, María José Artacho, Julia Guzmán-Puche, Antonio Doblas, Elisa Vidal, Clara Natera, Luis Martínez-Martínez, Julian Torre-Cisneros, Juan José Castón, Elena Pérez-Nadales, Ángela Cano, Manuel Recio, María José Artacho, Julia Guzmán-Puche, Antonio Doblas, Elisa Vidal, Clara Natera, Luis Martínez-Martínez, Julian Torre-Cisneros, Juan José Castón

Abstract

Introduction: Infections caused by carbapenemase-producing Enterobacterales are frequent and associated with high rates of mortality. Intestinal carriers are at increased risk of infection by these microorganisms. Decolonisation strategies with antibiotics have not obtained conclusive results. Faecal microbiota transplantation (FMT) could be an effective and safe strategy to decolonise intestinal carriers of KPC-producing Klebsiella pneumoniae (KPC-Kp) but this hypothesis needs evaluation in appropriate clinical trials.

Methods and analysis: The KAPEDIS trial is a single-centre, randomised, double-blind, placebo-controlled, phase 2, superiority clinical trial of FMT for eradication of intestinal colonisation by KPC-Kp. One hundred and twenty patients with rectal colonisation by KPC-Kp will be randomised 1:1 to receive encapsulated lyophilised FMT or placebo. The primary outcome is KPC-Kp eradication at 30 days. Secondary outcomes are: (1) frequency of adverse events; (2) changes in KPC-Kp relative load within the intestinal microbiota at 7, 30 and 90 days, estimated by real-time quantitative PCR analysis of rectal swab samples and (3) rates of persistent eradication, KPC-Kp infection and crude mortality at 90 days. Participants will be monitored for adverse effects throughout the intervention.

Ethics and dissemination: Ethical approval was obtained from Reina Sofía University Hospital Institutional Review Board (approval reference number: 2019-003808-13). Trial results will be published in peer-reviewed journals and disseminated at national and international conferences.

Trial registration number: NCT04760665.

Keywords: infection control; infectious diseases; public health.

Conflict of interest statement

Competing interests: ‘Yes, there are competing interests for one or more authors and I have provided a Competing Interests statement in my manuscript and in the box below’

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Schedule of enrolment, interventions and assessments according to SPIRIT guidelines. FMT, faecal microbiota transplantation; KPC-Kp, KPC-producing Klebsiella pneumoniae; SPIRIT, Standard Protocol Items: Recommendations for Interventional Trials.1 If female and of child-bearing age. 2 Physical examination: weight, height, blood pressure, heart and respiratory rate and temperature. Does not apply if interview is conducted telephonically.3 Hemogram with at least hemoglobin, white blood cell count, neutrophils and platelets. Blood chemistry at least with creatinine, urea, bilirubin, transaminases and PCR.4 Serology for hepatitis A, B and C viruses; human immunodeficiency virus (HIV), HIV-1 and HIV-2; nontreponemal rapid plasma reagin (RPR) test, and fluorescent treponemal antibody absorbed (FTA-ABS) test.

References

    1. Aguado JM, Silva JT, Fernández-Ruiz M, et al. . Management of multidrug resistant gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev 2018;32:36–57. 10.1016/j.trre.2017.07.001
    1. Pérez‐Nadales E, Gutiérrez‐Gutiérrez B, Natera AM, et al. . Predictors of mortality in solid organ transplant recipients with bloodstream infections due to carbapenemase‐producing Enterobacterales : The impact of cytomegalovirus disease and lymphopenia. Am J Transplant 2020;20:1629–41. 10.1111/ajt.15769
    1. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017;8:460–9. 10.1080/21505594.2016.1222343
    1. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013;13:790–801. 10.1038/nri3535
    1. Quraishi MN, Widlak M, Bhala N, et al. . Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment Pharmacol Ther 2017;46:479–93. 10.1111/apt.14201
    1. Saidel-Odes L, Polachek H, Peled N, et al. . A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol 2012;33:14–19. 10.1086/663206
    1. Oren I, Sprecher H, Finkelstein R, et al. . Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infect Control 2013;41:1167–72. 10.1016/j.ajic.2013.04.018
    1. Lübbert C, Faucheux S, Becker-Rux D, et al. . Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents 2013;42:565–70. 10.1016/j.ijantimicag.2013.08.008
    1. Machuca I, Gutiérrez-Gutiérrez B, Pérez Cortés S, et al. . Oral decontamination with aminoglycosides is associated with lower risk of mortality and infections in high-risk patients colonized with colistin-resistant, KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2016;71:3242–9. 10.1093/jac/dkw272
    1. Tacconelli E, Mazzaferri F, de Smet AM, et al. . ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant gram-negative bacteria carriers. Clin Microbiol Infect 2019;25:807–17. 10.1016/j.cmi.2019.01.005
    1. Bar-Yoseph H, Hussein K, Braun E, et al. . Natural history and decolonization strategies for ESBL/carbapenem-resistant Enterobacteriaceae carriage: systematic review and meta-analysis. J Antimicrob Chemother 2016;71:2729–39. 10.1093/jac/dkw221
    1. Allegretti JR, Mullish BH, Kelly C, et al. . The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 2019;394:420–31. 10.1016/S0140-6736(19)31266-8
    1. Cammarota G, Ianiro G, Tilg H, et al. . European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017;66:569–80. 10.1136/gutjnl-2016-313017
    1. Seong H, Lee SK, Cheon JH, et al. . Fecal microbiota transplantation for multidrug-resistant organism: efficacy and response prediction. J Infect 2020;81:719–25. 10.1016/j.jinf.2020.09.003
    1. Saïdani N, Lagier J-C, Cassir N, et al. . Faecal microbiota transplantation shortens the colonisation period and allows re-entry of patients carrying carbapenamase-producing bacteria into medical care facilities. Int J Antimicrob Agents 2019;53:355–61. 10.1016/j.ijantimicag.2018.11.014
    1. Huttner BD, de Lastours V, Wassenberg M, et al. . A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin Microbiol Infect 2019;25:830–8. 10.1016/j.cmi.2018.12.009
    1. Dinh A, Fessi H, Duran C, et al. . Clearance of carbapenem-resistant Enterobacteriaceae vs vancomycin-resistant enterococci carriage after faecal microbiota transplant: a prospective comparative study. J Hosp Infect 2018;99:481–6. 10.1016/j.jhin.2018.02.018
    1. Bilinski J, Grzesiowski P, Sorensen N, et al. . Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infect Dis 2017;65:364–70. 10.1093/cid/cix252
    1. Battipaglia G, Malard F, Rubio MT, et al. . Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria. Haematologica 2019;104:1682–8. 10.3324/haematol.2018.198549
    1. Bar-Yoseph H, Carasso S, Shklar S, et al. . Oral Capsulized fecal microbiota transplantation for eradication of carbapenemase-producing Enterobacteriaceae colonization with a metagenomic perspective. Clin Infect Dis 2021;73:e166–75. 10.1093/cid/ciaa737
    1. Singh R, de Groot PF, Geerlings SE, et al. . Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Res Notes 2018;11:190. 10.1186/s13104-018-3293-x
    1. Tavoukjian V. Faecal microbiota transplantation for the decolonization of antibiotic-resistant bacteria in the gut: a systematic review and meta-analysis. J Hosp Infect 2019;102:174–88. 10.1016/j.jhin.2019.03.010
    1. Saha S, Tariq R, Tosh PK, et al. . Faecal microbiota transplantation for eradicating carriage of multidrug-resistant organisms: a systematic review. Clin Microbiol Infect 2019;25:958–63. 10.1016/j.cmi.2019.04.006
    1. Chan A-W, Tetzlaff JM, Altman DG, et al. . Spirit 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med 2013;158:200. 10.7326/0003-4819-158-3-201302050-00583
    1. Cano A, Gutiérrez-Gutiérrez B, Machuca I, et al. . Risks of infection and mortality among patients colonized with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: validation of scores and proposal for management. Clin Infect Dis 2018;66:1204–10. 10.1093/cid/cix991
    1. García-García-de-Paredes A, Rodríguez-de-Santiago E, Aguilera-Castro L, et al. . Trasplante de microbiota fecal. Gastroenterología y Hepatología 2015;38:123–34. 10.1016/j.gastrohep.2014.07.010
    1. Youngster I, Russell GH, Pindar C, et al. . Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 2014;312:1772–8. 10.1001/jama.2014.13875
    1. van Nood E, Vrieze A, Nieuwdorp M, et al. . Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407–15. 10.1056/NEJMoa1205037
    1. Pierce VM, Simner PJ, Lonsway DR, et al. . Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol 2017;55:2321–33. 10.1128/JCM.00193-17
    1. Lerner A, Adler A, Abu-Hanna J, et al. . Spread of KPC-producing carbapenem-resistant Enterobacteriaceae: the importance of super-spreaders and rectal KPC concentration. Clin Microbiol Infect 2015;21:470.e1–470.e7. 10.1016/j.cmi.2014.12.015
    1. Ramos-Ramos JC, Lázaro-Perona F, Arribas JR, et al. . Proof-of-concept trial of the combination of lactitol with Bifidobacterium bifidum and Lactobacillus acidophilus for the eradication of intestinal OXA-48-producing Enterobacteriaceae. Gut Pathog 2020;12:15. 10.1186/s13099-020-00354-9
    1. Reigadas E, Bouza E, Olmedo M, et al. . Faecal microbiota transplantation for recurrent Clostridioides difficile infection: experience with lyophilized oral capsules. J Hosp Infect 2020;105:319–24. 10.1016/j.jhin.2019.12.022
    1. Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M, et al. . Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis 2017;17:726–34. 10.1016/S1473-3099(17)30228-1
    1. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, et al. . Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev 2018;31:e00079–17. 10.1128/CMR.00079-17
    1. Giannella M, Trecarichi EM, De Rosa FG, et al. . Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: a prospective observational multicentre study. Clin Microbiol Infect 2014;20:1357–62. 10.1111/1469-0691.12747
    1. Tischendorf J, de Avila RA, Safdar N. Risk of infection following colonization with carbapenem-resistant Enterobactericeae: a systematic review. Am J Infect Control 2016;44:539–43. 10.1016/j.ajic.2015.12.005
    1. Davido B, Batista R, Dinh A, et al. . Fifty shades of graft: how to improve the efficacy of faecal microbiota transplantation for decolonization of antibiotic-resistant bacteria. Int J Antimicrob Agents 2019;53:553–6. 10.1016/j.ijantimicag.2019.03.008
    1. Woodworth MH, Hayden MK, Young VB. The role of fecal microbiota transplantation in reducing intestinal colonization with antibiotic-resistant organisms: the current landscape and future directions. Open Forum Infect Dis 2019;6:ofz288. 10.1093/ofid/ofz288
    1. Freitag TL, Hartikainen A, Jouhten H, et al. . Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol 2019;10:2685. 10.3389/fmicb.2019.02685
    1. Ji SK, Yan H, Jiang T, et al. . Preparing the gut with antibiotics enhances gut microbiota reprogramming efficiency by promoting Xenomicrobiota colonization. Front Microbiol 2017;8:1208. 10.3389/fmicb.2017.01208
    1. Peng Z, Xiang J, He Z, et al. . Colonic transendoscopic enteral tubing: a novel way of transplanting fecal microbiota. Endosc Int Open 2016;4:E610–3. 10.1055/s-0042-105205
    1. Kao D, Roach B, Silva M, et al. . Effect of oral Capsule- vs Colonoscopy-Delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 2017;318:1985–93. 10.1001/jama.2017.17077
    1. Alagna L, Palomba E, Mangioni D, et al. . Multidrug-Resistant gram-negative bacteria decolonization in immunocompromised patients: a focus on fecal microbiota transplantation. Int J Mol Sci 2020;21:5619–22. 10.3390/ijms21165619

Source: PubMed

3
구독하다